

BrailleSketch: A Gesture-based Text Input Method for

People with Visual Impairments

Mingzhe Li, Mingming Fan, Khai N. Truong

Department of Computer Science

University of Toronto

franklin.li@mail.utoronto.ca, mfan@cs.toronto.edu, khai@cs.toronto.edu

ABSTRACT
In this paper, we present BrailleSketch, a gesture-based text input
method on touchscreen smartphones for people with visual
impairments. To input a letter with BrailleSketch, a user simply
sketches a gesture that passes through all dots in the
corresponding Braille code for that letter. BrailleSketch allows
users to place their fingers anywhere on the screen to begin a
gesture and draw the Braille code in many ways. To encourage
users to type faster, BrailleSketch does not provide immediate
letter-level audio feedback but instead provides word-level audio
feedback. It uses an auto-correction algorithm to correct typing
errors. Our evaluation of the method with ten participants with
visual impairments who each completed five typing sessions
shows that BrailleSketch supports a text entry speed of 14.53
word per min (wpm) with 10.6% error. Moreover, our data
suggests that the speed had not begun to plateau yet by the last
typing session and can continue to improve. Our evaluation also
demonstrates the positive effect of the reduced audio feedback
and the auto-correction algorithm.

CCS Conc epts
• Social and professional topics➝ Professional topics➝
Computer profession ➝ Assistive technologies

Keywords
Blind; Braille; text input; mobile devices; sketch; gesture.

1. INTRODUCTION
Text entry is an important communication mechanism. For people
with visual impairments this can be accomplished by writing
Braille. Traditionally, this is done manually by using a slate, a
stylus, and Braille paper. However, it can be difficult for people
with visual impairments to learn to hold the stylus up-right and
write Braille backward. Six-key Braille typewriters, such as the
Perkins Brailler [21], have since enabled people to type by
simultaneously pressing keys that correspond to the different
Braille dots accordingly.

Over the past decade, mobile devices have become increasingly
more powerful and accessible. With commodity mobile devices,
people with visual impairments are able to enter text using the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
ASSETS '17, October 29-November 1, 2017, Baltimore, MD, USA
© 2017 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-4926-0/17/10.
https://doi.org/10.1145/3132525.3132528

onscreen keyboard with screen reader software, such as Apple’s
VoiceOver. However, this approach results in a very low text
entry speed [4]. Alternatively, people can use speech recognition
software to input text at a much faster rate [3]. However, speaking
in public places may not always be appropriate and can introduce
privacy concerns. A growing body of research has been exploring
ways to leverage the user’s ability to perform touch and multi-
touch gesture inputs on mobile devices. For example, BrailleTap
[9], TypeInBraille [15], Perkinput [4], and BrailleEasy [23] enable
the user to type Braille by performing multiple taps sequentially to
specify the dot codes for the desire letter—this can be time
consuming. Methods such as Perkinput [4] and BrailleTouch [22]
have also explored how touchscreen mobile devices can be used
to support 6-finger chorded typing, as done on the Perkins Brailler.

Researchers have also explored gesture-based approaches [10][17]
that allow users to draw gestures that are interpreted into letters.
These approaches include methods which require the user to learn
a new unistroke alphabet (e.g., MoonTouch [10]) as well as those
which allow the user to draw a gesture to represent the intended
Braille code (e.g., Edge Braille [17]). Approaches, such as
EdgeBraille, allow people to leverage their knowledge of the
Braille alphabet. There is only a low learning curve in this
situation because people do not need to learn a new alphabet.

Inspired by this line of research, we present BrailleSketch (see
Figure 1), a gesture-based text entry method for people with
visual impairments to type Braille by drawing a path. To use

Figure 1. With BrailleSketch, a user simply sketches a path
that connects all dots in a Braille code to type the
corresponding letter.

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

12

https://doi.org/10.1145/3132525.3132528
mailto:khai@cs.toronto.edu
mailto:mfan@cs.toronto.edu
mailto:franklin.li@mail.utoronto.ca

BrailleSketch, the user simply places her finger anywhere on the
touch screen and sketches a path that passes through all the dots in
a Braille code in a way that is intuitive to her. Different from
existing approaches of typing Braille on the touchscreen, such as
BrailleTouch [25], our design leverages the user’s knowledge of
the Braille alphabet but does not require users to know how to
type Braille by performing 6-finger chorded input, as done with a
Perkins Brailler. Our method also differs from other gesture-based
text entry methods, such as MoonTouch [10], because it does not
require people with visual impairments to learn an additional
alphabet. We conducted a user study with people with visual
impairments to evaluate the performance of BrailleSketch. Our
results show that after ~100 minutes of typing, participants on
average were able to type 14.53 word per minute (wpm) with
10.6% error rate. The fastest speed achieved overall was 19.32
wpm.

2. RELATED WO RK
In this section, we review three general text entry approaches for
people with visual impairments. The first approach explores the
use of audio feedback to enable the user to input text. The second
approach investigates typing-based and tapping-based methods for
a variety of mobile devices, such as touchscreens and wearables.
The final approach enables the user to perform gestures that are
recognized into text.

2.1 Audio-based Methods
People with visual impairments often do not need to use a special
keyboard when they use a computer. However, they require
special screen reader software that voices the keys that are
pressed. On mobile devices, the touchscreen accessibility
function, such as Apple’s VoiceOver, can help the user identify
the keys that she touches in order to enter text. However, previous
studies have shown that this method supports very low text entry
rate (e.g., 4.5 wpm [4], 4.3 wpm [3], 0.66 wpm [5]). To improve
upon this, No-Look-Notes [5] explores dividing the screen into 8
pie segments with each corresponding to a set of characters (e.g.,
‘ABC’) that are easier to select. When the user touches a segment,
the system reads the set of characters located in that segment. She
can then tap the region with a second finger to select it and all of
the characters get arranged vertically on the screen. When the
user’s finger touches the screen again, the system reads the
character located at that position. She then can tap the screen with
a second finger to select that letter or slide the finger to find the
desired letter. In their evaluation of the system, Bonner et al.
showed that participants were able to input text using No-Look
Notes at a rate of 1.32 wpm with 11% error and VoiceOver at
0.66 wpm with 60% error.

Another audio-based approach to entering text is via speech.
Azenkot and Lee’s study [3] shows that the average text entry
speed via speech is 19.5 wpm. However, speech interaction can
potentially be inappropriate in public spaces and may introduce
privacy concerns.

2.2 Typing- and T apping-based M ethods
The Perkins Brailler [21] is a typewriting tool that includes six
keys which map to the six dots in a Braille code. To type, the user
must simultaneously push the keys corresponding to the dots for
the intended Braille code.

With the advent of mobile devices, researchers have explored
additional ways to allow users to input Braille codes. For
example, BrailleTap [9] maps inputs from the phone’s physical
keypad into dots in a Braille code. Guerreiro et al. showed that
BrailleTap supports a rate of 3.6 wpm with 6.55% error.

BrailleType [19] divides the touchscreen of a phone into a 3×2
grid. The user can sequentially perform a long-press in different
grid cells, one cell at a time, to input dots in a Braille code. The
user completes the typing of a character by performing a double
tap. An evaluation of the system showed that participants were
able to input text at a rate of 1.49 wpm with 9.7% error rate. With
SingleTapBraille [1][2], users perform a series of sequential taps
on the touchscreen to indicate the positions of the dots in a Braille
code. Alnfiai and Sampalli evaluated SingleTapBraille and
showed that participants achieved 4.71 wpm with 11% total error
rate. TypeInBraille [15][16] allows users to input a Braille code
by performing three multi-finger tap gestures sequentially. Each
tap gesture types a row of dots in the Braille code. A 1-finger tap
on the left side of the screen inputs the left dot in a row, while a 1-
finger tap on the right side of the screen inputs the right dot in a
row, a 2-finger tap input both dots, and a 3-finger tap inputs no
dots in a row. This method results in a speed of 6.3 wpm with 3%
error.

The Perkins Brailler design and 6-key chording method have also
been extended to work on touchscreens and wearables. For
example, BrailleEasy [23] and Perkinput [4] allow users to type a
column of a Braille code one at a time by simultaneously tapping
different fingers of one hand on the touchscreen. With Perkinput,
on small touchscreen devices, the two columns of a Braille code
can be tapped one after another. The simultaneous chording of 6-
keys can also be supported on larger touchscreen devices with
both hands touching the screen at the same time. Alternatively,
two small devices can be paired to support input from a different
hand. In their evaluation of the system, participants were able to
achieve 6.05 wpm with 3.52% uncorrected error rate.
BrailleTouch [8] allows users to cradle a mobile phone with two
hands and type a Braille code with both hands at the same time.
Much like how users would type with a Perkins Brailler, three
fingers from each hand would be used to type each column of dots
in a Braille code. With BrailleTouch, expert users were able to
achieve a rate of 23.2 wpm with 14.5% error rate [25] while
slower users reached 9.40 wpm with 39.3% error rate. Apple iOS
natively includes Braille keyboard that uses a similar method to
BrailleTouch. However, one drawback of these methods is that
the number of people who know how to type Braille using
Perkins-like methods is less than those who can read Braille [6].

Additionally, researchers have also examined glove based
wearable text input methods. Lee et al. [18] designed a pair of
chording gloves that allowed people with visual impairments to
type Braille on any surface as if they were typing on a Braille
typewriter. An evaluation of the work showed that participants
were able to reach a rate of 24.3 wpm and 5.2% error rate [11].
Despite the high text entry speed, glove based methods require
users to wear additional hardware on their hands.

2.3 Gesture-based Methods
Researchers have also explored the use of gestures as an intuitive
method for people with visual impairments to input text. For
example, EdgeBraille [17] users can enter a Braille code by
swiping their finger along a mobile device’s edges, which contain
areas that could be touched to input dots. Participants achieved a
speed of 7.17 wpm with 8.43% error with EdgeBraille. Because
the dots are input by touching areas along the edge of the screen,
users have to move their finger across the entire screen to draw
Braille codes, which results in long travel distances. Inspired by
EdgeBraille’s design, our design removes these two constraints by
allowing users to place their finger anywhere on the screen and to

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

13

Figure 2. BrailleSketch on a smartphone. A user types the Braille code for ‘N’ by touching a finger anywhere on the screen first (a),
then moving it horizontally to the right (b), then vertically to the bottom (c), then diagonally to the bottom left (d), and finally
lifting the finger off the screen (e). The sketched path passes through the 4 dots in the Braille code of ‘N’ in a single gesture.

sketch the gesture without needing to reach specific positions. Our
design also allows users to draw the same Braille code differently.

Another type of gesture-based text entry methods for people with
visual impairments is to draw pre-defined gestures for each
English letter. For example, Moontouch [10] allows users to draw
gestures in Moon Alphabet to input English letters. Heni et al.’s
evaluation of their approach shows that participants were able to
type at 10.14 wpm. In contrast, our work examines the speed at
which participants would be able to input text using gestures
based on their knowledge of the Braille alphabets instead of
learning a different alphabet, such as Moon.

3. SYSTEM DESCRIPTION
In this section, we describe how we implemented BrailleSketch as
a gesture based text input method that allows people with visual
impairments to sketch Braille codes on a touchscreen.

3.1 High-Level Design
We will first describe how users input a Braille code by
performing a gesture. We will then discuss specific audio
feedback provided to help the user to sketch the code without
sight.

3.1.1 Sketching a B raille Code
To input a letter, the user simply sketches a path that connects all
the dots in the desired Braille code. We illustrate how the user
would type ‘N’ using BrailleSketch in Figure 2. The Braille for
the letter ‘N’ contains 4 dots: 2 dots in the top row, one in the
right column of the middle row, and one in the left column of the
last row. In this example, the user simply places her finger

Figure 3. Braille codes for “K”, “M”, “U”, and “X”.

anywhere on the screen to input the top left dot. Then, the user
drags her finger to the right to input the top right dot. Next, the
user drags her finger downwards to input the dot on the right side
of the middle row. Finally, the user drags her finger downwards
diagonally to input the fourth dot on the left side of the bottom
row. Once the user lifts her finger from the screen, the letter ‘N’ is
recognized.

Most Braille codes can be drawn in more than one way. To make
the system easy to use, BrailleSketch allows users to sketch the
Braille code however it seems most natural to them. In Section
3.2.1, we discuss how the system recognizes the dots intended in
the path drawn by the user and why this enables the gesture to be
drawn flexibly.

Braille codes for the letters ‘L’, ‘M’, ‘U’, and ‘X’ (see Figure 3),
do not have dots in the middle row. However, we designed our
method to always input the next adjacent dot after the gesture is
continued along a direction for a particular distance. Thus, to
enable the user to input Braille codes that do not include dots in
the middle row, the user must draw two gestures that are
recognized together. A gesture path drawn very shortly (<500 ms)
after another gesture path is treated as part of the previous gesture.
For example, a ‘K’ is drawn using a double tap; ‘X’ is drawn
using two lines; ‘M’ is drawn with a horizontal line first and then
a dot; ‘U’ instead is drawn with a dot first and then a line.

3.1.2 Audio F eedback
To help people with visual impairments better perceive whether
they have sketched is correct, the system provides different audio
cues. Specifically, a 1000 HZ sine-wave audio sound will be
played when a new dot is in a cardinal (i.e., horizontal and vertical)
direction adjacent from the previously added dot, and a 200 HZ
sine-wave audio sound will be played if it is in an ordinal (i.e.,
diagonal) direction from the previous dot. For example, when
typing the Braille code for the letter ‘N’, the user will hear the
same audio cue in Figure 2b and Figure 2c, because the new dot is
cardinally adjacent to the previous dot. However, she will hear a
different audio cue in Figure 2e because the new dot is ordinally
adjacent to the previous dot. In this way, the user knows when she

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

14

Figure 4. A 5x3 grid of dots used to recognize the gesture
drawn by the user is computed and centered where the finger
touches the screen.

has incorrectly inputted a letter. For example, to draw ‘C’, the
user simply needs to drag her finger horizontally, on the screen;
and to draw an ‘E’, the user would drag her finger downwards
diagonally left to right. If the user wants to type ‘C’, but hears a
200 HZ sine-wave audio sound, then she would know that the
gesture was drawn incorrectly.

Previous research suggests that reading each letter during typing
can decrease the text entry speed. Specifically, Mackenzie and
Castellucci [14] showed that providing feedback after typing a
word, rather than after each letter, can increase the typing speed.
Inspired by this idea, our system does not provide letter level
feedback. Instead, it only reads aloud the entire word after the
user types a space to complete a word. The system, however, does
provide an immediate audio feedback (“no”), if the sketched
gesture cannot be recognized as any letter. Additionally, our
design does not support correction while drawing the gesture. To
correct an error, the user must delete the wrong gesture and type it
again.

3.2 Implementation
In this section, we discuss how BrailleSketch recognizes a gesture
as a Braille code and how it maps Braille dots. Then we describe
how BrailleSketch implements the auto-error correction and
supports the input of additional keys (i.e., space, delete, and
enter).

3.2.1 Sketch R ecognition
We implemented BrailleSketch as an Android application. We
used HUAWEI Ascend Mate7 phone running Android version
4.4.2 as the testing device. It has a 6.0-inch screen. The height and
width are 157 mm and 81 mm respectively, and the resolution is
1080 × 1920 pixels. BrailleSketch allows the user to touch
anywhere on the screen to start a gesture. When the user touches
the screen, BrailleSketch computes a 5 rows × 3 columns grid of
dots centered at the touch point (see Figure 4). We set the size of
the grid to be 5×3 so that the touch point can be any dot of a 3×2
Braille code. For example, in Figure 4, depending on the direction
that the user draws the gesture next, the touch point can be the
bottom right dot of the 3×2 Braille code or it can also be the top
left dot of the Braille code, etc. The diameter of each dot in the
grid is 2/15 of the screen’s height (i.e., the longer edge), which is
2.1 cm on the testing phone. This is slightly larger than the
average width of the pad of the index finger for adults (1.6 to 2
cm) [7]. The distance between the centers of two adjacent dots is
1/6 of the screen’s height.

Figure 5. Two different ways of sketching the Braille code for
the letter “P” beyond the one shown in the Figure 1.

BrailleSketch supports different ways of typing a letter. For
example, Figure 1 shows one way to type the letter ‘P’ by starting
from the top right corner dot, moving up to the top left corner dot,
and finally ending at the bottom left corner dot. Alternatively, the
user can also start from the top left corner dot, move to the top
right corner dot, then move diagonally to the middle left dot, and
finally end at the bottom left corner (see Figure 5 a). The user can
also start from the bottom left dot, move up to the top left dot,
then move horizontally to the right and end at the top right dot
(see Figure 5 b). Thus, BrailleSketch allows the user to sketch
Braille codes flexibly. The Grade 1 Braille alphabet design
enables our method to use the subsequent dots in a gesture to
determine the position of the first touchpoint. For example, if the
subsequent dots in the pattern are above the dot added at the initial
touch point, then the system determines the first touchpoint must
be in one of the bottom two rows.

3.2.2 Auto-Correction
BrailleSketch implements an auto-correction algorithm [14] to
correct errors in typed words. The algorithm works as follows: if
the word typed by the user is in the dictionary, then it is left alone.
The algorithm uses a dictionary that contains 10,000 words taken
from the British National Corpus [24]. If a word is not in the
dictionary, it computes the minimum string distance (MSD)
between the inputted word and all words in the dictionary. The
system then generates three lists of words with MSD equals 1, 2
and 3. It then sorts each list of words based their frequency. It
combines the three lists and moves all the words that have the
same length as the inputted word to the front of the combined list.
The word at the top of the list is used to replace the inputted word.
It is also possible that the algorithm does not find any match to the
word. In that case, the auto-correction leaves the typed word as is.
Future implementations of the autocorrection algorithm will
explore how to include a dictionary with all words from the
British National Corpus.

3.2.3 Additional Keys
Aside from the 26 English letters, BrailleSketch also allows the
user to type three additional keys: Space, Delete and Enter (see
Figure 6). When the keyboard is active, we override the
functionality of the volume buttons. The user can type Space to
finish a word by pressing the volume down button (located on the
right side of the phone). She can type Enter by pressing anywhere
on the screen for more than 2000 ms. Finally, she can delete a
letter by performing swipe right gesture that leaves the screen.

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

15

Figure 6. Three additional keys implemented: pressing
volume down key to type the Space; swiping to the right to
delete a letter; pressing anywhere on the screen for more
than 2s to type “Enter”.

4. EVALUATION
4.1 Method
We next investigated the typing performance that participants
with visual impairments were able to achieve with BrailleSketch.
We describe the participants and the procedure involved in our
evaluation of the BrailleSketch method.

4.1.1 Participants
We recruited 10 participants with visual impairments (2 males and
8 females) from CNIB (Canadian National Institute for the Blind)
via emails and snowball sampling. The average age of the
participants was 50.3 (SD=11.4). The average year of
experiencing Braille was 32.3 (SD = 8.1). All participants were
legally blind. Four of the participants were blind since born. All
participants have used Braille-based typing devices before the
study.

4.1.2 Procedure
Our study consisted 5 test sessions (1 to 5). Before the first test
session, we provided participants with a training session (~10
minutes) to learn and practice typing using BrailleSketch. Then
during each test session, BrailleSketch presents the participant
with one text phrase at a time by reading it aloud using the
Android’s text to speech synthesizer. We asked participants to
type this phrase as fast and accurately as possible using only
lower-case letters and spaces, with no punctuation or numbers.
Participants can press the volume up button located on the right
side of the phone to request the system to speak the phrase out
again. We created five sets of phrases by shuffling the standard set
of 500 English phrases which was developed by Mackenzie and
Soukoreff [13]. In this standard set, the frequency of each letter is
highly correlated with the English language. Each test session
used a different shuffling of the phrase set, and all participants
were presented with the same shuffling of the phrases in the same
order.

Each test session consists of two parts. First, participants were
asked to type as many phrases as possible for 15 minutes. After
each 15-minute typing session, we also asked the participants to
type 3 additional phrases in order to be able to directly compare
our results with a Heni et al.’s gesture-based text input method for
people with visual impairments[10].

We arranged a 5-minute break between each two test sessions to
let the participants relax. After the participants completed all test
sessions, we interviewed them about problems that they might
have encountered, and to collect their feedback about
BrailleSketch.

Figure 7. Typing speed for each session of the two typing tests.
The horizontal axis is session number and the vertical axis is
speed (wpm). Bars show standard deviations.

We compensated each participant $65 for completing the study.
We also offered a $50 gift card to the participant who had the
highest average speed across all five sessions to motivate them to
keep typing as quickly and accurately as they could throughout
the entire study.

4.2 Results
The ten participants completed a total of 50 15-minute typing test
sessions and 50 3-phrase typing test sessions. We analyzed the
speed, error rate, gesture per character of the data collected using
the StreamAnalyzer [26]. We treated the test session as one
independent variable (IV) with 5 levels (i.e., five test sessions)
and the type of typing test as the second IV with 2 levels (i.e.,
the15-minute typing test and the 3-phrase typing test). We
performed a 2-way repeated measure ANOVA to examine
whether the changes between sessions and the difference between
two typing tests were statistically significant or not. When a
statistically significance was found, we performed pairwise
comparisons with Bonferroni correction to identify the pair(s) that
exhibited significant difference. We reported partial eta square as
the measure of the effect size in addition to the p-value.

4.2.1 Speed
Figure 7 shows the average typing speeds in wpm for each session
of the two typing tests. For the 15-minute typing tests, the speed
in the first test session was 5.37 wpm (SD = 1.86). It grew session
after session and reached 11.39 wpm (SD = 1.36) in the last
session. The best performance in the final session was 13.30 wpm,
while the worst performance was 9.748 wpm.

For the 3-phrase typing tests, the speed in the first test session was
6.56 wpm (SD = 2.43). It also grew session after session and
reached 14.53 wpm (SD = 2.13) in the last session. The best
performance in the final session was 19.32 wpm, while the worst
performance was 11.53 wpm.

There was a significant effect of the type of typing test on the text
ଶentry speed (𝐹ଵ,ଽ = 31.02, p < .001, 𝜂 = .78). There was a

significant effect of the test session on the text entry speed too
(𝐹ସ,ଷ= 121.5, p < .001, 𝜂

ଶ= .93). Pairwise comparisons show that
the differences between each two sessions were statistically
significant (p < .05).

4.2.2 Error R ates
We calculated the average uncorrected, corrected, and total error
rates for two typing tests. We first computed the average error
rates per session per person. We then averaged all participants’
error rates for each session to compute the average error rate for

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

16

Figure 8. Total error rate for each session of the two typing
tests.

each test session. The total, uncorrected, and corrected error rates
are shown in Figure 8, Figure 9 and Figure 10 respectively.

4.2.2.1 Total Error R ates
Figure 8 shows the total error rates for the two typing tests over
the five test sessions. For the 15-minute typing tests, the total
error rate decreases from 0.439 (SD = 0.139) in the first session to
0.308 (SD = 0.166) in the last session. For the 3-phrase typing
tests, the total error rate decreases from 0.148 (SD = 0.036) in the
first session to 0.106 (SD = 0.069) in the last session.

There was a significant main effect of the typing test on the total
error rate (𝐹ଵ,ଽ= 13.78, p < .01, 𝜂

ଶ= .61). There was a significant
effect of the test session on the total error rate too (𝐹ସ,ଷ= 22.64, p

ଶ< .01, 𝜂 = .72). Pairwise comparisons show that the differences
between the two sessions were significant (p < .05) except
between session 1 and session 2 (p = 0.96) and between session 2
and 3 (p = 0.66).

4.2.2.2 Uncorrected E rror R ates
Figure 9 shows the uncorrected error rates for the two typing tests
over the five test sessions. For the 15-minute typing tests, the
uncorrected error rate decreases from 0.105 (SD = 0.0908) in the
first session to 0.047 (SD = .036) in the last session. For the 3-
phrase typing tests, the uncorrected error rate decreases from
0.0804 (SD = 0.100) in the first session to 0.03 (SD = 0.040) in
the last session.

There was a significant main effect of the typing test on the
uncorrected error rate (𝐹ଵ,ଽ= 5.36, p < .05, 𝜂

ଶ= .37). There was a
statistically significant effect of the test session on the total error

ଶrate too (𝐹ସ,ଷ = 3.12, p < .05, 𝜂 = .26). Pairwise comparisons
show no significant differences between any two sessions.

Figure 10. Corrected error rate for each session of the two
typing tests.

4.2.2.3 Corrected E rror R ates
Figure 10 shows the corrected error rates for the two typing tests
over the five test sessions. For the 15-minute typing tests, the
corrected error rate decreases from 0.33 (SD = 0.14) in the first
session to 0.10 (SD = 0.03) in the last session. For the 3-phrase
typing tests, the uncorrected error rate decreases from 0.23 (SD =
0.16) in the first session to 0.079 (SD = 0.07) in the last session.

There was a significant effect of the typing test on the corrected
error rate (𝐹ଵ,ଽ= 13.85, p < .01, 𝜂

ଶ= .61). There was a significant
effect of the test session on the corrected error rate too (𝐹ସ,ଷ =

ଶ16.09, p < .01, 𝜂 = .64). Pairwise comparisons show that the
differences between the last session and the first three sessions
were significant (p <.05). There was a trend towards significance
between the last session and the fourth session (p=.053) and
between the fourth session and the first session (p=.070). There
was no significant difference between any other sessions.

4.2.3 Gesture Per Character (G PC)
GPC denotes the number gestures taken on average to input a
letter. GPC provides an indication of the accuracy and efficiency
of an input method. A high GPC value indicates low accuracy and
low efficiency. The closer the GPC value is to 1, the more
accurate and efficient the method is.

Figure 11 shows the GPC for two typing tests over 5 test sessions.
For the 15-minute typing tests, GPC decreases from 2.16 (SD =
0.506) in the first session to 1.24 (SD = 0.096) in the last session.
The best GPC was 1.05 (SD = 0.055) in the last session. For the 3-
phrase typing tests, the uncorrected error rate decreases from 1.81
(SD = 0.79) in the first session to 1.193 (SD = 0.145) in the last
session. The best GPC was 1 in the last session.

There was a trend towards significance between the two typing

Figure 9. Uncorrected error rate for each session of the two
typing tests. Figure 11. GPC for each session of the two typing tests.

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

17

Figure 12. Three types of uncorrected error per letter in the
last session of the 15-minute typing tests. “Sum” represents
the total uncorrected error rate for each letter. “Avg”
represents the average uncorrected error rates of all letters.

tests (𝐹ଵ,ଽ= 4.98, p = .053, 𝜂
ଶ= .36). There was a significant effect

ଶof the test session on the GPC too (𝐹ସ,ଷ = 15.61, p < .001, 𝜂 =
.64). Pairwise comparison results show that the differences
between the last session and the first three sessions were
significant (p <.05). There was a trend towards significance
between the last session and the fourth session (p=.052). There

was no significant difference between any other sessions.

4.2.4 Unpacking t he Errors
We analyzed the data from the last session of the 15-minute
typing test to gain a better understanding of the errors that
participants made when using BrailleSketch. We used the data
from the 15-minute typing tests, because participants typed more
phrases in the 15-minute typing tests than the 3-phrase typing tests
and also made significantly more errors. Additionally, statistical
analysis shows a significant difference or a trend towards
significant difference between the last session and any of the first
four sessions.

4.2.4.1 Detailed Un corrected E rrors
Figure 12 shows the different uncorrected errors per letter in the
last session of the 15-minute typing tests. From the figure, we can
see that Substitution error was the most common type of error. It
was followed by Deletion error and then Insertion error. N, S and
G were the top-3 letters with the highest total uncorrected errors.
G, S, and Y were the top-3 letters with the highest Substitution
errors. On the other hand, I, V, and X were the top-3 letters with
the lowest Substitution errors.

a b c d e f g h i j k l m n o p q r s t u v w x y z

a 193 0.6 0.11 0.67 0.56 0.54 0 0.06 0 0 0 0.01 0 0 1.9 0 0 0.06 0 0.41 0.22 0 0.01 0 0.11 0

b 1.2 134 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0.27 0 164 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0.23 0 0 0 0 0.07 0

d 0.4 0 0 103 0.25 0 0 0 0 0 0 0 0 0.14 0 0 0 0.33 0 0.5 0 0 0 0 1 0

e 0.68 0 0 0 155 0 0 0.03 0 0 0.5 0 0 0 0 0 0.4 0 0 0 0.08 0 0.1 0 0.33 0

f 0.4 0 0 0.48 0.4 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0 0 0 0 0 0

g 0 0 0.5 0 0 0 132 0 0 0 0 0 0 6.5 0 0 0 0 0.24 0.31 0.1 0 0 0 0 0

h 0 0 0 0 0 0 0 121 0 0 0 0 0.17 0 0 0 0.2 0 0.33 0 0 0 0 0 0 0

i 0.3 0.2 0 0 0 0 0 0 36 0 0 0 0.12 0 0.53 0 0 0 0 0 0.06 0 0 0 0 0

j 0.5 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l 0.03 0.3 0 0 0 0.1 0.5 0.5 0 0 0 112 0 0 0.29 0.01 0 0.33 0 0.54 0.01 0 0.5 0 0 0

m 0 0 0.1 1 0 0 0 0 0 0 0.6 0.1 38 0 0 0 0.4 0 0 0 0 0 0 0 0 0

n 0 0 0 0.25 0 0 0 0 0 0 0 0 0 234 0 0 0 0.33 0.5 0 0 0 0 0 0 0

o 0 0 0.61 0.19 0.55 0 0 0 0 0 0 0.1 0.17 0 64 0 0 0.14 0.75 0.29 1 0 0 0 0.1 0

p 0 0 0 0 0 0.2 0.5 0 0 0 0 0 0 0 0 182 0 0 0 0 0 0 0 0 0 0

q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 52 0 0 0 0 0 0 0 0 0

r 0.67 0 0 0.13 0.04 0 0 0 0 0 0 0.33 0 0 1 0 0 64.4 0 0.21 0 0 0 0 0.67 0

s 0.2 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 4.5 0 0 93 0 0 0 0 0 0.25 0

t 0 0 0 0 0 0.5 0 0 0 0 0 0.33 0 0 0 0 0 0 2.5 126 0 0 0 0 0 0

u 0 0 0 0 1.25 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 47 0 0.5 0 0 0

v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 10 0 0 0 0

w 0 74 0 0 0

x 0 0 0.06 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 17 0 0

y 0 0 0 0 0 0 3.4 0.3 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 63 0

z 0 12

Figure 13. The confusion matrix of the substitution errors of the last session of the 15-minute typing test.

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

18

Figure 14. The three letters with the highest substitution
errors and what they were mistyped as. Red lines represent
the part of the sketched gesture path that contributed to the
confusion between these pairs of letters.

We further analyzed the most common type of error, the
Substitution error, by computing a confusion matrix [26]. Figure
13 shows the confusion matrix of the Substitution errors for all
letters in the last session of the 15-minute typing tests. Each cell
in row x and column y of the matrix contains the number of
occurrences of a substitution error where the presented letter x
was transcribed as y. The counts were weighted by all possible
alignments and thus may not be integers [12]. We found that: 1)
all letters, as expected, appeared unevenly in the testing phrases;
2) most letters fell in the diagonal line, which were correctly
transcribed; 3) G, S, and Y had the highest Substitution errors and
were mistyped as N, P and G respectively. Figure 14 shows the
Braille codes of these letters. The difference between G and N and
the difference between S and P were the direction of the initial (or
final) part of the gesture path (see the first two groups in Figure
14). The difference between Y and G was the length of a vertical
line in the gesture paths (see the last group in Figure 14).

4.2.4.2 Detailed C orrected E rrors
Corrected errors happen when participants delete incorrectly
typed letters and change them. We computed the corrected error
rate of each letter by dividing the number of corrections for a
letter by the total number of times that the letter appeared in the
testing phrases. Figure 15 shows the corrected error rate of each
letter in the last session of the 15-minute typing test. We found
that the letters with the highest corrected error rate were: N, V,
and Z. The letters with the lowest three corrected error rates were:
J, Q, and X.

4.2.5 Subjective Feedback
Participants were generally positive about using BrailleSketch.
For example, one participant commented that “Typing with one
finger is nice. I found that it is easy to use, even though I am used
to typing with the Perkins Brailler. I am getting faster after
getting used to drawing on the phone. It is also helpful for people
to learn Braille.” Participants also felt excited about the potential
uses of BrailleSketch. For example, one participant suggested the
need to integrate a method such as BrailleSketch with home
appliances, such as the microwave, because more and more
appliances are equipped with a touch screen that are difficult to

Figure 15. The corrected error rate per letter for the last
session of the 3-phrase typing tests.

use without sight. More generally, participants encouraged us to
release BrailleSketch for the iOS system so that more people with
visual impairments could download and use it.

5. DISCUSSION
In this section, we first discuss our system’s performance in
comparison to other gesture based text entry methods. We then
discuss the speed and error rate achieved with BrailleSketch and
compare them with other text entry methods for people with
visual impairments. Afterwards, we analyze the performance of
the automatic error correction algorithm that we used in
BrailleSketch. Finally, we discuss the effect of the delayed audio
feedback that BrailleSketch used and the intuitiveness of the
method.

5.1 Gesture based T ext Inpu t Methods
Like BrailleSketch, EdgeBraille [17] and MoonTouch [10] are
two input methods that allow people with visual impairments to
draw gestures that are interpreted into text. EdgeBraille, similar to
BrailleSketch, leverages the user’s familiarity with the Braille
alphabet. However, EdgeBraille requires that users draw gestures
that touch areas along the edges of the touchscreen to specify the
dots in the intended Braille code; this requires long travel
distances on the touchscreen. On the other hand, MoonTouch
requires that users learn the Moon alphabet. However,
MoonTouch allowed the users to draw gestures of any size
anywhere on the screen. This enabled MoonTouch users to input
text faster than EdgeBraille users (at 10.14 wpm [10] vs. 7.17 [17]
respectively).

In this work, we examine how to develop a gesture-based method
that leverages the users’ familiarity with the Braille alphabet
without requiring the user to target specific locations on the screen
to support accurate input. We designed the evaluation procedure
to include the 3-phrase typing test following the 15-minute typing
tests in order to formally compare BrailleSketch with MoonTouch
[10]. In particular, Hani et al.’s evaluation of the MoonTouch
system included 5 evaluation sessions in which participants were
asked to type three phrases as quickly and accurately as possible
after “learning sessions” for “learning the system and interacting
with it during a time interval of at least 15 min and at most 20
min” [9]. Participants typed at an average speed of 10.14 wpm in
the fifth session with 1.22 GPC when using MoonTouch. In
contrast, participants typed at an average speed of 14.53 wpm
with 1.19 GPC when using BrailleSketch.

5.2 Other Braille-based Text Input Methods
Table 1 shows the average speed and error rate of other Braille-
based text input methods from the literature and our
BrailleSketch. We also added training time and study time
whenever we could find them from the related papers. The speed
achieved with BrailleSketch (14.53 wpm) outperformed the other
methods listed except BrailleTouch’s rate achieved by expert and
moderate performance groups. The typing speed with
BrailleTouch in the last three sessions were not significantly
different from each other [25], which suggested that the reported
speed probably has begun to plateau. However, the typing speed
between any two sessions with BrailleSketch system was
significantly different (p < .05). This shows that typing speed
achieved with BrailleSketch has not begun to plateau by the last
session yet and still has the potential to increase if participants
keep using it. On the other hand, the error rate made by
participants using BrailleSketch (0.11) had already dropped lower
than that of BrailleTouch.

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

19

Table 1. Speed and error rate of Braille-based input method.

Braille-based text Speed Error Training Time Study Time
entry method (wpm) rate (min) (min)

BrailleType [20] 1.49 0.07 10 ~ 15 N/A
SingleTapBraille [1] 4.71 0.11 20 40 ~ 60
Perkinput [4] 6.05 0.04 75 525
TypeInBraille [15] 6.3 0.03 10 N/A

EdgeBraille [17] 7.17 0.08 5 N/A
BrailleEasy [23] 9.82 0.10 40 40
BrailleTouch [25] 9.4 0.39 N/A 450
(poor performance
group)
BrailleTouch [25] 21 0.33 N/A 450
(moderate
performance group)
BrailleTouch [25] 23.2 0.15 N/A 450
(expert performance
group)
BrailleSketch (our
system)

14.53 0.11 10 ~100

5.3 Audio F eedback
Inspired by previous research that showed removing immediate
per letter feedback could increase text entry speed [14],
BrailleSketch does not speak out the typed letter immediately
after users type it. Instead, it only speaks out the entire word after
users finish typing it.

To examine the effect of the reduced audio feedback strategy, we
also implemented BrailleSketch with the immediate letter-level
audio feedback that reads aloud the letter immediately after it was
typed. We tested it with one participant using the same study
protocol. The participant was born blind and has used Braille
extensively for over 30 years. The typing speed of his last session
using the system with immediate letter-level audio feedback was
8.37 wpm, which was lower than the lowest speed of any
participants in the last session when using BrailleSketch without
immediate letter-level audio feedback (11.53 wpm). The total
error rate of his last session in this test (0.113) was roughly equal
to the average total error rate of BrailleSketch without immediate
letter-level audio feedback (0.106). These results suggest that the
reduced audio feedback in the current BrailleSketch
implementation (i.e., no immediate letter-level audio feedback)
improved its text entry speed without increasing the error rate.
However, we only tested the audio feedback with one participant.
Further evaluation with more participants are needed to further
validate the effect of different audio feedback strategies.

In our current design, BrailleSketch provides an immediate audio
feedback (“no”) to the users, if the sketched gesture cannot be
recognized as any letter (erroneous input). Our evaluation shows
that participants did not confuse the word “no” with erroneous
input because words are only read aloud after being completed
with Space or Return. However, a better audio feedback, such as
non-word sounds, should be considered in the future.

While designing the audio feedback to indicate the direction the
users are sketching their gesture paths, we tested different sound
frequencies internally before choosing 1000 HZ and 200 HZ.
However, we did not systematically evaluate how different audio
feedback may affect text entry performance, which is an important
future topic of discussion regarding input methods for people with
visual impairments.

5.4 Automatic Error Correction
To evaluate the effect of the auto-correction algorithm that our
system used, our system also recorded the transcribed texts before
using the auto-correction algorithm. We compared the transcribed

phrases before and after the auto-correction was applied with the
presented phrases in the 3-phrase typing tests. We found among
the total 770 presented words, 62 words were mistyped before
using auto-correction. The auto-correction properly corrected 34
words, which was 55% of the mistyped words. Of the 28 words
that auto-correction failed to correct, 15 were changed to incorrect
words and 13 were left as-is. Future works will examine how to
improve the auto-correction algorithm.

5.5 Intuitiveness of BrailleSketch
BrailleSketch can be used quickly by people who already know
the Braille alphabet because it allows users to create their own
mappings of the Braille pattern for letters into gestures without
any training needed. The system can recognize different gestures
for the same letter based on the sketched paths after completed
(Figure 5). Whichever is the most natural mapping for the user,
they can draw it. For many other Braille typing methods, users
need to know how to type Braille in Perkin-like methods.

To correctly type letters, participants either know the gestures that
they can use or are able to guess it. Thus, to some extent, our
study tested the intuitiveness of BrailleSketch. We also analyzed
the errors caused by touching too high/low on the screen through
the five test sessions. The average total error rate of all
participants in all test sessions due to touching too high/low on the
screen was 0.85%. This low error rate suggests that participants
were able to land or adjust their finger to avoid the edges of the
phone during the typing test.

6.		 CONCLUSION
In this paper, we presented BrailleSketch, a Braille-based text
entry method that allows users to input text by sketching a path
that connects all the dots in the intended Braille. The average
speed achieved using BrailleSketch by participants in our study
was 14.53 wpm with 10.6% error and 1.19 GPC. We showed that
the speed has not begun to plateau by the last session yet and still
has the potential to increase. Our results show that gesture-based
Braille text entry method with reduced audio feedback and auto-
correction is potentially better than most tapping and typing
methods for people with visual impairments who already know
how to read Braille. Our approach does not require people with
visual impairments to learn an additional alphabet and is faster
than other alphabet based gesture methods.

7.		 ACKNOWLEDGES
This research was approved by the Social Science, Humanities,
and Education Research Ethics Board (REB) at the University of
Toronto under the protocol reference #32798. This work was
supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

8.		 REFERENCES
[1]		 Alnfiai, M. and Sampalli, S. 2016. An Evaluation of

SingleTapBraille Keyboard. Proceedings of the 18th
International ACM SIGACCESS Conference on Computers
and Accessibility - ASSETS ’16 (New York, New York,
USA, 2016), 161–169.

[2]		 Alnfiai, M. and Sampalli, S. 2016. SingleTapBraille:
Developing a Text Entry Method Based on Braille Patterns
Using a Single Tap. Procedia Computer Science. 94, (2016),
248–255.

[3]		 Azenkot, S. and Lee, N.B. 2013. Exploring the use of speech
input by blind people on mobile devices. Proceedings of the
15th International ACM SIGACCESS Conference on

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

20

Computers and Accessibility - ASSETS ’13 (New York, New
York, USA, 2013), 1–8.

[4]		 Azenkot, S., Wobbrock, J.O., Prasain, S. and Ladner, R.E.
2012. Input finger detection for nonvisual touch screen text
entry in Perkinput. Proceedings of Graphics Interface
(2012), 121–129.

[5]		 Bonner, M.N., Brudvik, J.T., Abowd, G.D. and Edwards,
W.K. 2010. No-Look Notes: Accessible Eyes-Free Multi-
touch Text Entry. Proceedings of International Conference
on Pervasive Computing (2010), 409–426.

[6]		 Braille profiling project - RNIB:
https://www.rnib.org.uk/sites/default/files/braille_profiling.d
oc. Accessed: 2017-05-05.

[7]		 Dandekar, K., Raju, B.I. and Srinivasan, M.A. 2003. 3-D
finite-element models of human and monkey fingertips to
investigate the mechanics of tactile sense. Journal of
biomechanical engineering. 125, 5 (2003), 682–691.

[8]		 Frey, B., Southern, C. and Romero, M. 2011. BrailleTouch:
Mobile Texting for the Visually Impaired. Universal Access
in Human-Computer Interaction. Context Diversity. Springer
Berlin Heidelberg. 19–25.

[9]		 Guerreiro, T., Lagoá, P. and Santana, P. 2008. NavTap and
BrailleTap: Non-visual texting interfaces. Proceedings of the
Rehabilitation Engineering and Assistive Technology Society
of North America Conference (2008).

[10] Heni, S., Abdallah, W., Archambault, D. and Uzan, G. 2016.
An Empirical Evaluation of MoonTouch: A Soft Keyboard
for Visually Impaired People. Proceedings of International
Conference on Computers Helping People with Special
Needs (2016), 472–478.

[11] Lee, S., Hong, S.H., Jeon, J.W., Choi, H.-G. and Choi, H.
2004. Design of Chording Gloves as a Text Input Device.
Springer, Berlin, Heidelberg. 201–210.

[12] MacKenzie,		I.S. and Soukoreff, R.W. 2002. A character-
level error analysis technique for evaluating text entry
methods. Proceedings of the second Nordic conference on
Human-computer interaction - NordiCHI ’02 (New York,
New York, USA, 2002), 243.

[13] MacKenzie, I.S. and Soukoreff, R.W. 2003. Phrase sets for
evaluating text entry techniques. CHI ’03 extended abstracts
on Human factors in computing systems - CHI ’03 (New
York, New York, USA, 2003), 754.

[14] MacKenzie, S. and Castellucci, S. 2012. Reducing visual
demand for gestural text input on touchscreen devices.
Proceedings of the 2012 ACM annual conference extended
abstracts on Human Factors in Computing Systems Extended
Abstracts - CHI EA ’12 (New York, New York, USA, 2012),
2585.

[15] Mascetti,		 S., Bernareggi, C. and Belotti, M. 2011.
TypeInBraille: a braille-based typing application for
touchscreen devices. The proceedings of the 13th
international ACM SIGACCESS conference on Computers

and accessibility - ASSETS ’11 (New York, New York, USA,
2011), 295.

[16] Mascetti,		 S., Bernareggi, C. and Belotti, M. 2012.
TypeInBraille: Quick Eyes-Free Typing on
Smartphones.Computers Helping People with Special Needs
(2012), Springer, Berlin, Heidelberg. 615–622.

[17] Mattheiss, E., Regal, G., Schrammel, J., Garschall, M. and
Tscheligi, M. 2014. Dots and Letters: Accessible Braille-
Based Text Input for Visually Impaired People on Mobile
Touchscreen Devices. Proceedings of the International
Conference on Computers for Handicapped Persons (2014).
Springer, Cham. 650–657.

[18] Myung-Chul Cho, Kwang-Hyun Park, Soon-Hyuk Hong, Jae
Wook Jeon, Sung Il Lee, Hyuckyeol Choi and Hoo-Gon
Choi A pair of Braille-based chord gloves. Proceedings.
Sixth International Symposium on Wearable Computers,
154–155.

[19] Oliveira,		 J., Guerreiro, T., Nicolau, H., Jorge, J. and
Gonçalves, D. 2011. Blind people and mobile touch-based
text-entry. The proceedings of the 13th international ACM
SIGACCESS conference on Computers and accessibility -
ASSETS ’11 (New York, New York, USA, 2011), 179.

[20] Oliveira,		 J., Guerreiro, T., Nicolau, H., Jorge, J. and
Gonçalves, D. 2011. BrailleType: unleashing braille over
touch screen mobile phones. In Proceedings of the
INTERACT 2011 (2011), 100–107.

[21] Perkins		 Braillers: http://www.perkinsproducts.org/about-
perkins-braillers. Accessed: 2017-04-15.

[22] Romero, M., Frey, B., Southern, C. and Abowd, G.D. 2011.
BrailleTouch: Designing a Mobile Eyes-Free Soft Keyboard.
Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services -
MobileHCI ’11 (New York, New York, USA, 2011), 707.

[23] Šepić, B., Ghanem, A. and Vogel, S. 2014. BrailleEasy: One-
handed Braille Keyboard for Smartphones. Studies in health
technology and. (2014), 1030–1035.

[24] Silfverberg,		M., MacKenzie, I.S. and Korhonen, P. 2000.
Predicting text entry speed on mobile phones. Proceedings of
the SIGCHI conference on Human factors in computing
systems - CHI ’00 (New York, New York, USA, 2000), 9–
16.

[25] Southern, C., Clawson, J., Frey, B., Abowd, G. and Romero,
M. 2012. An evaluation of BrailleTouch: mobile touchscreen
text entry for the visually impaired. Proceedings of the 14th
international conference on Human-computer interaction
with mobile devices and services - MobileHCI ’12 (New
York, New York, USA, 2012), 317.

[26] Wobbrock, J.O. and Myers, B.A. 2006. Analyzing the input
stream for character- level errors in unconstrained text entry
evaluations. ACM Transactions on Computer-Human
Interaction. 13, 4 (Dec. 2006), 458–489.

Session: Interaction Techniques and Frameworks ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

21

http://www.perkinsproducts.org/about
https://www.rnib.org.uk/sites/default/files/braille_profiling.d

Accessibility Report

		Filename:

		fp013-li.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 2

		Passed: 11

		Failed: 17

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Failed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Failed		Text language is specified

		Title		Failed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Failed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Failed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Failed		Alternate text that will never be read

		Associated with content		Failed		Alternate text must be associated with some content

		Hides annotation		Failed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Failed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Failed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Failed		LI must be a child of L

		Lbl and LBody		Failed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

