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Abstract
Intelligent agents coexisting with humans often need to interact
with human-shared objects in environments. Thus, agents should
plan their interactions based on objects’ affordances and the current
situation to achieve acceptable outcomes. How to support intelli-
gent agents’ planning of affordance-based interactions compatible
with human perception and values in real-world contexts remains
under-explored. We conducted a formative study identifying the
physical, intrapersonal, and interpersonal contexts that count to
household human-agent interaction. We then proposed ACKnowl-
edge, a computational framework integrating a dynamic knowledge
graph, a large language model, and a vision language model for
affordance-based interaction planning in dynamic human environ-
ments. In evaluations, ACKnowledge generated acceptable planning
results with an understandable process. In real-world simulation
tasks, ACKnowledge achieved a high execution success rate and
overall acceptability, significantly enhancing usage-rights respect-
fulness and social appropriateness over baselines. The case study’s
feedback demonstrated ACKnowledge’s negotiation and personal-
ization capabilities toward an understandable planning process.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); Ambient intelligence.

Keywords
Affordance-based Interaction Planning, Real-world Context, Hu-
man Compatible
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1 Introduction
Intelligent agents are increasingly integrated into various aspects of
human life, including classrooms [33, 45], hospitals [5, 124], work-
places [39], and households [46]. As assistants, collaborators, or
companions [119], these agents are expected to interact with phys-
ical entities shared or owned by humans. In shared environments
with different contexts, the agents should follow how humans nor-
mally perceive and reason about [1, 34, 97] the interaction possibil-
ities an environment offers — i.e., the affordances of objects [41]
— and act [74] accordingly to be compatible with humans. Failing
to comply with human practices physically, psychologically, and
socially [28] may damage objects, disrupt environments, and con-
sequently downgrade humans’ experience of interacting with the
agents [17, 28, 48, 62].

While human compatibility through explainability [109] and
personalizability [64] is well recognized in Human-Robot Inter-
action (HRI) literature, our work aims to extend these existing
concepts and offer new insights into practically achieving it when
agents plan their high-level interactions with objects in dynamic
human environments with complex, implicit constraints. First, we
emphasize that an agent should understand and model how
humans perceive and reason about the affordances of objects
in dynamic environments to be in tune with human activities.
Second, we highlight that reconciliation with human practices
should be enhanced in every intendedmove of the affordance
planning process, rather than just in final outcomes. While
acceptable task results can improve user satisfaction and effective-
ness, an understandable and adaptable planning process further
improves communication efficiency by requiring less training data
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for agent education [58, 78, 105, 115]. This ultimately leads to a
better user experience and greater compatibility with humans.

Fulfilling the aforementioned goals is non-trivial. The first chal-
lenge is identifying relevant factors among various contexts and
their collective impact on human affordance perception. Early stud-
ies modeled affordance understanding without context by detecting
canonical affordance — the conventional use of an object — through
vision [30, 76, 81]. To improve context awareness, later works, such
as the SayCan series [3, 21, 47, 50, 120], inferred applicable actions
with observations of the physical environment to ground the af-
fordance knowledge of large language models (LLMs), others used
more advanced vision language models (VLMs) to explore richer
contextual semantics to improve the grounding [49, 104]. Addi-
tionally, several studies captured personal preferences for object
locations in rearrangement tasks through propagation algorithms
[59] and reinforcement learning with LMs [46, 85, 116, 118]. Al-
though previous works gradually acknowledged contextual factors,
they did not clearly identify the most important ones for object in-
teraction planning and overlooked their collective impact, of which
the complex interplay may influence how affordances are perceived
and used in real-world scenarios. This issue limits the applicability
of existing approaches in dynamic environments.

The second challenge stems from the demand for both desir-
able interaction results and an understandable, adaptable planning
process to ensure each proposed move is reconcilable with human
practices. This requires the planning to align with human cog-
nitive reasoning structures. Recent research has combined struc-
tured reasoning, such as chain-of-thought, with VLMs to improve
reasoning in complex tasks [71, 80]. While demonstrating the ad-
vantages of cognitive architecture for improving the success rates
of the generated plans, these studies often overlook its potential
of incorporating relevant contextual factors to enhance process
understandability and adaptability.

To address the first challenge, we first conducted a formative
study (𝑁 = 14) in a typical household scenario involving diverse
agent-environment interactions to explore human perceptions and
uses of real-world context in affordance-based planning. Guided by
the 4E cognition theory [84] and our findings, we derived design
requirements. We instantiated the physical, intrapersonal, and in-
terpersonal context [24, 114] in a domestic environment as location
and object occupancy, human status, and social relationship and
owner-defined usage-rights, respectively.

To bridge the second research gap, upon the insights from the
formative study, we propose a framework, ACKnowledge, that com-
putationally models the dual-process cognition architecture [56]
(Fig. 2) for intelligent agents to understand real-world context, rea-
son about interaction candidates with their desirability, and propose
acceptable plans in a human-comprehensible manner. Specifically,
ACKnowledge simulates the intuitive thinking process (System 1
[56]) using a weighted knowledge graph (KG) of common phys-
ical entities and their interaction possibilities constructed based
on existing crowd-sourced commonsense knowledge of affordance
(ATOMIC2020 [52]). This allows agents to create theoretically feasi-
ble plans based on normative affordances given a high-level task de-
scription. Then,ACKnowledge exercises analytical thinking (System
2 [56]) to propose and rank alternative plans considering physical,
intrapersonal, and interpersonal contexts. This is achieved by (1)

automatically adapting affordance perception based on physical
context via weight redistribution and object-node property infer-
ence in the KG and (2) constructing plans using a context-aware
retrieval-augmented generation (RAG) approach. This component
enables agents to generate acceptable planning results with an
understandable process that allows user negotiation and error cor-
rection with the agent.

We evaluated our proposed approach through two studies. We
first assessed the execution disambiguity and human acceptability
of the interaction plans generated by ACKnowledge in a simulated
household setting. We simulated how agents visually observe the
environment via a camera and ran ACKnowledge and two baselines
to generate detailed plans to carry out given tasks accordingly. The
plans were presented both as machine-executable commands and in
human natural languages. We measured the execution disambiguity
rate in each condition and invited 21 participants to rate the plans
on potential success, physical validity, usage-rights respectfulness,
social appropriateness, and overall acceptability. Results indicated
that ACKnowledge’s plans were unambiguous and specific enough
to act upon for 98.78% of tasks in simulation, outperforming the
baselines by 14.63%. Participants rated ACKnowledge’s interaction
plans significantly higher than those of the baselines, particularly
in overall acceptability, usage-rights respectfulness, and social ap-
propriateness.

To further explore ACKnowledge’s negotiation and personaliza-
tion capabilities in an understandable planning process, we con-
ducted a real-world case study (𝑁 = 9). A Wizard-of-Oz agent first
demonstrated the planning process of ACKnowledge in augmented
reality to participants. After understanding the process, partici-
pants instructed the agent to correct any suboptimal plans. They
then reconfigured the physical environment and personalized the
household using an interactive web app to define usage-rights and
affordance usage. The result shows that participants can interpret
the ACKnowledge’s planning process and successfully correct un-
satisfactory plans to acceptable ones through negotiation. They
are also satisfied with the household personalization process and
ACKnowledge’s corresponding planning results.

In summary, the contribution of this paper to the HCI community
is threefold.

• We identify factors in physical, intrapersonal, and interper-
sonal contexts that are critical to human-compatible agent-
environment interactions.

• We propose the ACKnowledge, a context-aware computa-
tional framework that is self-adaptive and user-adaptable
to support human-compatible, affordance-based interaction
planning for agents working in dynamic human environ-
ments.

• We validate the performance of ACKnowledge in terms of
acceptable planning results and an understandable planning
process through a simulation study and a case study in real-
world settings, taking household tasks as an example.

2 Related Work
2.1 Affordance in the Physical World
Affordance, first proposed by Gibson and appropriated by Norman,
refers to the possible interactions offered by the objects in an en-
vironment [41, 86]. Humans’ perception of affordance is crucial
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for guiding how their subjective brain and body interact with the
real world. Affordance is widely viewed as “relational” [20, 26],
leading to various theories on its perception formation. Shotter and
Noble proposed that affordances emerge from practical experience
[103], while some scholars model acquisition as a reinforcement
learning process [70, 81]. In contrast, Costall et al. [26] argued that
man-made artifacts’ affordances are more closely tied to embodied
human intentions than past experiences, such as chairs designed
primarily for sitting but also allowing standing.

Regardless of the formation, some affordances (a.k.a. canonical
or typical affordances) are naturally favored over other possible
affordances [26]. This implies distinguishable variance in relation
strength, which can be computationally modeled as the weight
on object-affordance relations [88]. Another relativeness of affor-
dance is with the context where an object is presented in [95]. The
4E (embodied, embedded, enactive, and extended) cognition the-
ory [84] suggests that humans dynamically adapt their perception
of affordance to the interdependent and dynamic real-world con-
texts to guide their interactive behaviors with objects. Researchers
recognized such real-world contexts as integrating physical (phys-
ical environment), intrapersonal (e.g., personal identities, active
status, etc.), and interpersonal (e.g., social relationships, etc.) con-
texts [24, 114]. This suggests that contextual factors may alter the
weights of the object-affordance relations mentioned above [88].
Inspired by the relational account of affordance, our work proposes
to simulate humans’ perception of the object-affordance network
as a weighted knowledge graph and adapt it to real-world contexts
in specific tasks.

2.2 Physical Affordance in HCI
Real-world object affordance, or physical affordance [57], has been
extensively studied in human-computer interaction (HCI). One re-
search direction emphasizes utilizing objects’ current affordances.
Research like [43, 90, 117] focuses on translating physical affor-
dances, such as grasping, into gestural commands, while Interac-
tionAdapt [22] emphasizes context-sensitivity of such translation.
Other works have explored reusing real-world objects based on
their physical affordances in Virtual or Augmented Reality (VR/AR)
as props [72] or as Tangible User Interfaces (TUI) [32, 54] to create
embodied experiences. Research like VR Haptics at Home [36] has
even investigated repurposing objects based on their real-world
affordances in VR/AR. Another line of research focuses on creating
new affordances. Some research investigates how virtual repre-
sentations suggest possible affordances [35] or apply affordance
knowledge to assist object retrieval in VR [55, 121]. Beyond VR/AR,
HCI researchers have developed tangible devices or robots that
adapt their perceived affordances to user needs [37, 82]. Addition-
ally, some studies have addressed the formation of affordances, with
Liao et al. [70] viewing it as a reinforcement learning process and
Munguia et al. [81] using RL for precise object manipulation in
human-robot interaction. While these studies acknowledge that
object affordances influence human interaction methods, they pri-
marily focus on the canonical affordances of existing objects or
potential affordances for new creations. The perception of potential
affordances with varied possibilities for everyday objects remains
an area for further exploration.

2.3 Affordance-based Real-world Interaction
Planning Methods

The fields of machine learning (ML), computer vision (CV), robot-
ics, and language technologies (LT) have longstanding interests
in affordance-based real-world interaction planning. The rise of
embodied AI further attracts research attention to this topic [80].

2.3.1 Computer Vision-based Affordance Detection. Many works
have achieved high accuracy in affordance detection with various
CV techniques to determine the best object to complete a given
task. For example, Bahl et al. trained a visual affordance model that
estimates human-object interactions within a scene [10]. Large-
scale datasets like Partnet [79], which provides fine-grained part-
level affordance annotations, and AffordanceNet [29], with 23k
shapes labeled by 18 affordance categories, support continuous
improvements in CVmodels. However, existing datasets andmodels
are usually restricted to limited affordances, focused on regional
affordance detection, and only allowed static inputs. They cannot
sufficiently accommodate high-level interaction planning requests
in real-world tasks with diverse contexts.

2.3.2 Large Language Model with Real-world Grounding of Physical
Context. To compensate for the lack of real-world usability and
context awareness in CV-based works, recent studies proposed to
integrate LLMs with visual real-world grounding [3, 21, 47, 50, 120].
SayCan [3], as an example, achieved a planning success rate of 84%
and execution success rate of 74% with PaLM in the 101 robotic
tasks in a real kitchen. More works followed SayCan, extending to
tasks with an open vocabulary of object affordances [21, 50, 120]
and an improved planning policy [47]. Multimodal grounding fur-
ther enhances the depiction of real-world contexts [31, 65, 125].
PaLM-E introduced embodied language models integrating sensor
modalities with language models to connect words and percepts
[31]. Li et al. developed a model that demonstrated robust multi-
modal perception and reasoning capabilities, effectively following
human intent while exhibiting adeptness in context learning [65].
While effective, these real-world grounding methods attended pri-
marily to the physical context of affordance-based tasks to optimize
the real-world applicability of LLM planning.

2.3.3 Language Model-Based Interaction Planning Beyond Physical
Context. In reality, the interaction context of an object consists of
its surrounding physical environment, personal preference of users,
as well as social and cultural norms [23, 68]. In light of personal pref-
erence, works like [19, 46, 67, 85, 116, 118] applied learning-based
approaches to educating household agents to align with humans’
object arrangement preferences. Some other researchers consid-
ered social contexts and studied human-aware (e.g., status-aware,
activity-aware, etc.) interaction planning for robots [4, 25, 44, 73].
Recent advancements in VLMs enable researchers to capture and
understand the visual semantics of a scene and reason with com-
monsense knowledge. Vila [49] and MOO [104] excelled at robot
action and object manipulation planning with VLM in interactive
tasks. Researchers have attempted to employ cognitive architecture
in the language model for more comprehensive and reliable reason-
ing to facilitate affordance planning in increasingly complex tasks.
EmbodiedGPT [80] leveraged VLM with chain-of-thoughts (CoT)
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reasoning to plan robotic tasks in the Franka Kitchen and Meta-
World Benchmark datasets and achieved 1.6 times and 1.3 times
performance improvements compared to models without CoT.

In summary, existing works on affordance-based interaction
planning incorporated common sense and real-world contexts but
did not align them with the beliefs and perceptions of individual
users. While capable of successfully executing low-level commands
and high-level plans, these methods lacked the flexibility to accom-
modate on-demand personalization and dynamicity in the planning
process and results. There is a pressing demand for an adaptive
and adaptable architecture to plan human-compatible object in-
teractions in changing human environments by comprehensively
considering physical and other human-related contexts.

2.4 Computational Cognitive Architecture in
Real-world LLM-based Interaction Planning

Extensive discussions and explorations have been about apply-
ing computational cognitive architecture to LLM-based interaction
planning [60, 106, 107]. Psychologists introduced the dual-process
theory to describe human decision-making [56, 113], dividing cog-
nition into intuitive thinking (System 1) and analytical reasoning
(System 2). This theory highlights that both information retrieval
and analysis contribute to effective interaction decisions. Inspired
by such a cognitive structure, SwiftSage [71] computationally mod-
eled the two systems using a small fine-tuned language model and
an LLM to simulate fast and slow thinking, respectively. It surpassed
other methods in 30 household interaction planning tasks from the
ScienceWorld benchmark.

Some researchers proposed that grounding the perception of the
environment with commonsense knowledge enables fast reasoning,
representing intuitive thinking [102]. To model this commonsense-
based perception system computationally, researchers have ex-
plored using knowledge graphs (KGs) [52, 53], which effectively
serves LLM agents with external knowledge or auxiliary informa-
tion [69, 92, 112, 126, 127]. KG-based grounding can enhance LLM’s
ability to reduce hallucinations and increase their understanding of
and accordance with context. As for modeling the human analytical
reasoning system, prior works experimented with a wide variety
of methods besides direct application of LLM, including but not
limited to reinforcement learning [11], deep learning with cognitive
significance [60], and a combination of classical planning [8].

Inspired by the previous research efforts, we proposed adopting
a KG of affordance common sense as the intuitive thinking system,
updating and retrieving information from the KG based on real-
world contexts, and simulating the analytical reasoning system
through a reasoning chain. Our goal is to enable intelligent agents to
plan object interactions in dynamic human environments, achieving
human-acceptable results through an understandable process.

3 Study 1: Formative Study
Recognizing that humans’ awareness of real-world contexts [6, 13,
95] and their cognitive architecture [113] are essential for effective
interactions with objects in dynamic environments, we conducted
a formative study to explore how humans manifest these abilities
in actual households and their demands for agents working in their
space on affordance-based interaction planning.

3.1 Study Design
The study included four semi-structured interviews where partic-
ipants responded to two types of questions: one focused on their
past experiences with interaction planning, and the other invited
them to propose their expectations of the agents by imagining in-
teracting with a fully capable agent in a household, alongside visual
demonstrations as groundings (Fig. 1).

We chose a household scenario from various shared environ-
ments as it involves diverse objects, interactions, and social rela-
tionships. This choice also aligns with previous affordance-based
planning works [3, 21, 47, 50, 120]. We designed the formative study
in an imaginary format to avoid biases from humans’ doubts about
a robot’s execution ability. This approach enabled us to explore
human perceptions and usages of real-world contexts, together
with their expectation of agents, in affordance-based interaction
planning, free from the constraints of existing robot capabilities.

The first session explored participants’ expectations and de-
mands of intelligent housekeeping agents, helped them understand
the background of intelligent housekeeping agents, and defined
the scope of housekeeping tasks for the interview. Findings from
this session guided our subsequent affordance-based interaction
planning task designs (Section 5.1.1). The next three sessions in-
vestigated how humans perceive and utilize real-world contexts in
affordance-based interaction planning across three settings with
different context complexities: a general household, a personalized
household, and a personalized household with multiple individuals.
Each session featured a visual demonstration depicting specific
room setup and task as interview probes (Fig. 1). Participants then
answered interview questions from both human and agent per-
spectives based on their intuitive solutions and past experiences.
This dual-perspective approach grounded in specific scenes and
tasks allowed us to understand how users expect co-existing agents
to perceive and utilize context comprehensively and concretely.
Detailed interview questions are in supplementary materials.

(a) The setting for the session
of general household and per-
sonalized household. Only the
owner and agent are in the living
room/bedroom household. In the
general household setting ses-
sion, the task instruction is "Find
somewhere to place my bag". The
room also serves as a hint for the
personalized household setting
session to inspire participants.

(b) The living room in the person-
alized household with multiple
individual sessions. The scene
now includes the owner, guest,
and the agent, with the task "Find
my friend somewhere to sit".

Figure 1: Room settings and task scenarios presented to par-
ticipants in semi-structured interviews.
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3.2 Participants and Procedure
The study received institutional IRB approval. We recruited 14 par-
ticipants (7 males, 7 females;𝐴𝑔𝑒 = 23.14± 2.03, denoted as P1-P14)
through social networks and word-of-mouth, four of whom (P1, P2,
P4, P8) had prior experience with intelligent household agents. In
the briefing, we explained the study structure and the concept of
real-world contexts. We then discussed participants’ expectations
of intelligent housekeeping agents and their perceptions of con-
texts in various environments, session by session. Each interview
lasted one hour (compensated $9) and was audio-recorded with the
participant’s consent.

3.3 Findings
Two authors conduct thematic analysis [14] on the interview tran-
scripts through iterative coding and discussions and extract four
key themes from the experts’ responses: demanded assistance, real-
world context factors, adaptable perception of affordance, and trans-
parent planning process.

3.3.1 F1: “Help me when I need.” We first learned that humans do
not expect the agents to do everything for them. As P8 explained,
"I would like them to assist me with boring tasks or play the role of
me when I am not home." Based on our summarized codes, people
generally seek agent assistance with specific household task types:

• Kitchen: Cleaning, Cooking
• Living Room: Arranging, Cleaning, Socialising
• Bedroom: Arranging, Cleaning, Entertaining, Assisting in
Tasks in other rooms

3.3.2 F2: “You should be considerate.” All participants, as home-
owners, expected the agent to complete tasks according to real-
world contexts and pointed out the specific contextual factors to
consider when speaking from an agent’s perspective. We adapted
the concepts of physical, intrapersonal, and interpersonal contexts
from [24, 114] and classified the factors mentioned in participants’
feedback accordingly.

Physical Context: Location, Occupancy. Physical context
refers to the physical environment where interaction takes place.
Location significantly influences participants’ interaction choices.
For instance, all participants indicated that they would alter their
planning if instructions were given in the bedroom instead of the
living room. P6 reflected on a possible reason, “Maybe some fur-
niture has a higher hygiene standard [in the bedroom], and thus no
longer suitable as a candidate to place my bag on." This finding is
an example of how characteristics of locations lead to different
behaviors and norms of humans [2] in the form of the usage of
objects. Moreover, seven participants highly expected the agents
to detect the "free area or items". Based on feedback, we identi-
fied critical occupancy-related properties for agents to consider:
occupation (what affordance function they are currently offering),
occupant (object/person that is using the object), and occupancy
status (whether they are fully, partially, or not occupied). This oc-
cupancy concept helps computably model the situated affordance
[84], which underlies how humans actually assess the feasibility
and physical effort of using objects.

Intrapersonal Context: Human Status. Intrapersonal context
involves the physical and mental status of an actor. Human aware-
ness is crucial for agents. Nine participants highlighted the need for
agents to recognize people’s active status (i.e., static/dynamic) and
posture (i.e., sitting/standing/lying), aligning with prior research
[7]. This is because people’s status could indicate their present
interruptability and an acceptable level of engagement in upcom-
ing interactions. P3 exemplified "It would be annoying if the agent
performed any noise-making action while I sleep". Outside the house-
hold, it is also usually inappropriate to interrupt your colleagues to
help you when they are walking around distributing documents.

Interpersonal Context: Social Relationship, Owner-
Defined usage-rights. The interpersonal context concerns the
relationship between an actor and the other actors (and/or their
belongings) in a shared environment. Regarding what the agent
should consider in a multi-person environment, paying attention
to social etiquette and relationships between individuals were
mentioned six and five times. As social relationships are formed in
various settings beyond households [18], relationship-awareness is
also important in other shared environments. When discussing
what rules non-owner users should obey when interacting with
their households, eight participants respected private ownership
and defined usage boundaries for their items. For example, P6
mentioned, "Some utensils are specifically reserved for guests, and
those I use personally are not freely available to others."We concluded
such personal preferences as owner-defined usage-rights and
categorized them into three levels according to responses: private
(exclusive to the homeowner), semi-private (restricted to the owner
and designated users), and public. For example, a distant visitor
may need permission to use the owner’s private objects, whereas a
close friend can use them without asking. Ownership, privacy, and
personalization extend beyond households [9, 15]; individuals also
own corners in offices or bunk beds in hostels, defining their own
rules and expecting others to respect them.

3.3.3 F3: “You should know me and my home.” Besides having some
commonsense knowledge of the interaction possibilities, our par-
ticipants expressed other requirements for agents, especially the
need for agents to be adaptive. That is, the agents should be able to
recognize the environment independently and reason about object
affordances based on the existing environment. Eleven participants
agreed that reasoning about an object’s function based on its cur-
rent state could enhance the interaction experience and save the
owner’s time educating the agent. Moreover, they all expected the
agents’ adaptive understanding of affordance to take their usage
habits and item preferences into account in daily tasks. Ten par-
ticipants stressed the importance of agent obedience and wished
the agent to automatically learn their habits with minimal inter-
vention and education. As P2 pointed out, “Less is more, learn from
observation.” Being adaptive is also important for agents outside
the home, as they need to respond to dynamic environments and
varying user preferences in public spaces.

3.3.4 F4: “We should think on the same page.” While explainability
[109] and personalizability [64] are recognized as vital for human-
robot interactions, participants in our study emphasized that the
agents should be understandable and adaptable by users, with adap-
tations transferable to future uses. They hoped to comprehend the
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agents’ decisions and behaviors and to personalize them through
guidance, feedback, or corrections. Specifically, the participants
expected the agent to know the Dos and Don’ts. "They should have
a sense of what they can do and cannot," stated P8. When inappropri-
ate interactions with objects happened, some participants (P8, P9)
preferred providing one-shot corrections for the agent to learn from
its mistakes automatically. Other participants, instead, proposed to
"solve the problem from the bottom" (P2); they imagined that such
errors occurred due to the flaws in the agents’ reasoning structure
and would like to make direct adjustments to it. P11 said, "If I can
know what my agent is thinking and debug it, I might feel secure
to assign more tasks to them." Participants’ opinions reflected the
demand for transparency and modifiability in the agent’s planning
process to ease understanding and communication.

3.4 Design Requirements
Inspired by these findings, we derived four design requirements
concerning what human users value and demand:

F2, F3, F4→ DR1: When planning, the agent should integrate
affordance common sense with real-world context.

F2→DR2: The agent should plan affordance-based interactions
according to specific contextual factors.

F3, F4→ DR3: The agent’s perception of affordance should be
automatically adaptive to the physical environment and adaptable
by the user.

F3, F4 → DR4: The agent should be able to generate acceptable
plans with understandable and trustworthy process through user-
friendly interactive modalities.

Based on the design requirements and the instantiated contextual
factors from F2, we designed and implemented a housekeeping
agent framework to plan affordance-based interactions compatible
with humans.

4 Design and Implementation
In line with the DRs of the formative study, we developed the
ACKnowledge framework integrating commonsense knowledge
with awareness of contextual factors discussed in Section 3.3.2 as
shown in Fig. 2. Comprising “brain” and “vision” modules that
capture and synthesize real-world information in a dual-process
approach, ACKnowledge identifies objects that can most effectively
provide a specific affordance.

This section first introduces the primary “brain” and “vision”
modules based on the weighted KG and vision language model
(VLM). Section 4.2 explains how the “brain” and the “vision” mod-
ules coordinate in affordance-based interaction planning using real-
world context. In Section 4.3, we demonstrated ACKnowledge’s
interaction with users using a graphical user interface (GUI) for
personalization and a conversational user interface (CUI) for error
correction. Finally, we presented a user scenario to demonstrate
the real-world usage of ACKnowledge regarding its configuration,
resolution, and error correction.

4.1 Basic Modules of the ACKnowledge
Framework

4.1.1 “Brain” Module: Affordance Commonsense Scene Graph.

Figure 2: The overall structure of ACKnowledge. Above figure:
the left shows the perception and reasoning process of ACKnowledge,
and the right shows the user-agent interactions. The workflow of
ACKnowledge upon receiving instruction has three major phases:
Configuration (C0-C2), Resolution (R1, R2), and Error Correction
(E1, E2). This workflow also matches the user scenario as described
in Section 4.4. Moreover, elements of the workflow model the dual
process cognition. Step C1 is System 1 in the dual process, while Step
C2, R1, R2, and E2 belong to System 2. The workflow ofACKnowledge
has three major phases: Configuration, Resolution, and Error Cor-
rection. The below figure demonstrates how DRs are derived from
findings and how each step reflects the DRs.

Figure 3: The data structure in the affordance commonsense
scene graph. The scene graph is the subgraph of the weighted af-
fordance commonsense KG built from the ATOMIC2020 dataset [52]
with augmented node properties. The underlined properties (pri-
mary object and embedding) are the initial properties of the object
node in the original KG. The properties of VerbalPhrase and Affor-
dance nodes remain the same in the scene graph and the original
graph.

Weighted Affordance Commonsense Knowledge Graph.
Complying with the demand for commonsense knowledge (DR1)
and psychology theories [88], ACKnowledge employs a weighted
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KG to computationally model the connected and ranked relation-
ship between physical entities and their affordance. We built this
affordance commonsense KG upon crowdsourcing data from the
ATOMIC2020 dataset [52]. It includes 2.8k tuples of affordance
relationships between 62 common household objects and 1.5k af-
fordances with 2.1k verbal phrases of affordance (Fig. 3).

Fig. 4 demonstrates the construction process in detail. We first
selected the 62 commonly used household objects that occurred
more frequently than average and obtained 11k related tuples from
the ObjectUse (affordance relationship) relation tuples. Using spaCy,
NLTK, and community detection from the SentenceTransformers
package, we extracted and clustered verbal phrases from the original
sentences into root affordances.

Figure 4: Construction process of affordance commonsense
knowledge graph. It follows the steps of selecting common
daily objects, extracting related phrases to those objects, and
finally, clustering extracted verbal phrases into affordances.

Using three types of nodes — Object (62), Affordance (1.5k), and
VerbalPhrase (2.1k) — we created three relations: HaveAffordance
(2.8k),HaveRoot (2.8k), andHaveCollocation (4.0k). Each relation has
a weight based on tuple frequency, indicating connection strength.
We used frequency as weight because ATOMIC2020 balanced the
appearance of each object and affordance. To label canonical (most
typical), common (less typical), and possible (rare, occurred once
or twice in the dataset) usages, we performed K-means clustering
(𝑘 = 3) on HaveAffordance relations by weight, with higher weights
indicating more canonical relations.

Affordance Knowledge Scene Graph. Based on the grand
affordance commonsense KG, ACKnowledge extracts the sub-graph
of existing physical entities in the real world as the localized scene
graph (DR3). ACKnowledge also augments object node properties —
such as owner-defined usage-rights and occupancy — to sufficiently
describe the context (DR2). The usage-rights property of the Ob-
ject nodes, the naming of the Affordance nodes, and the existence
and weight of HaveAffordance relations are all modifiable by users
(DR3). However, occupancy properties remain fixed as part of the
ACKnowledge “vision” module performance. The complete list of
node and relationship properties is shown in Fig. 3.

4.1.2 “Vision” Module: Vision Language Model Based Object
Detection.

The “vision” module simulates how the agent visually observes
the environment. As shown in Fig. 5, such module of ACKnowledge
is realized by capturing real-time video and feeding it into a VLM
with a chain-of-thought (GPT-4o-20240513 supported by Microsoft
Azure, no pretraining, temperature = 0.0, all VLMs below refer to the
same setting if not specified) to obtain the amount and occupancy
of physical entities and human status.

Figure 5: The “vision” module process. It starts by extract-
ing frames from a video and then sequentially detecting
objects, their occupancy, and human statuses from the ex-
tracted frames.

Capturing the Amount and Occupancy of the Physical
Entities. ACKnowledge triggers physical entity capture when it
constructs the scene graph and updates the environment for each
task (DR2, DR3). With desired object entities as input, the VLM
first detects the quantities. During the scene graph construction, all
62 objects are the desired objects, whereas, in each task, only task-
related objects are detected for efficiency. The VLM then detects
the occupancy accordingly by filling in the blank with the amount
detection results as grounding.

Capturing and Comprehend Human Status. Human status,
as a contextual factor required by DR2, is captured and compre-
hended using video input. The video input is first processed into
frames with 5 fps, which prompts the VLM to describe the humans’
active status (static or dynamic) and posture (standing, sitting, or
lying) of each existing registered human character. VLM also specu-
lates an acceptable engagement level (the human can accept which
disruptive level of incoming interaction) for future interactions
based on the present human status.

4.2 Cooperation of the “brain” and the “vision”
with Real-world Context

4.2.1 Automatic Affordance Perception Adaption. ACKnowledge
adapts its affordance perception according to the physical envi-
ronment automatically through weight redistribution and node
properties inference (DR3) by observing real-world context factors
instantiated (DR2).

Weight Redistribution Based on Location. ACKnowledge
expresses location-sensitive affordance preferences alternation by
redistributing the weight according to the location using KG-LLM
combined scoring. LLMs predict the probability of the occurrence
of a specific word over the existing sequence 𝑝 (𝑤𝑘 |𝑤<𝑘 ) as log-
probs. To integrate LLM knowledge with validated commonsense
crowdsourcing knowledge, we formulated our goal as predicting
𝑃 (𝐴𝑎𝑓 𝑓

𝑜𝑏 𝑗
|𝐵𝑙𝑜𝑐 ) = 𝑃 (𝐴𝑎𝑓 𝑓

𝑜𝑏 𝑗
)𝑃 (𝐵𝑙𝑜𝑐 |𝐴

𝑎𝑓 𝑓

𝑜𝑏 𝑗
)/𝑃 (𝐵𝑙𝑜𝑐 ), where 𝐴

𝑎𝑓 𝑓

𝑜𝑏 𝑗
de-

notes the event that one object obj affords the affordance aff, and
𝐵𝑙𝑜𝑐 denotes the event’s location is loc.

𝑃 (𝐴𝑎𝑓 𝑓
𝑜𝑏 𝑗

) = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑎𝑓 𝑓 , 𝑜𝑏 𝑗)
𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑜𝑏 𝑗, 𝐾𝐺)

𝑃 (𝐵𝑙𝑜𝑐 ) = 1/3, assume the probability of choosing one room
out of three is equal

𝑃 (𝐵𝑙𝑜𝑐 |𝐴
𝑎𝑓 𝑓

𝑜𝑏 𝑗
) = 𝑒𝑙𝑜𝑔𝑝𝑟𝑜𝑏 (𝑙𝑜𝑐 |𝐴

𝑎𝑓 𝑓

𝑜𝑏 𝑗
)

(1)
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where weight(aff, obj) denotes the weight on the HaveAffordance
relation between obj and aff, frequency(obj, KG) denotes the fre-
quency of obj in the whole KG. logprobs is the prediction of text-
generation probability by LLM (text-embedding-002, no pretraining,
temperature = 0.0). Finally, ACKnowledge employs the normalized
weights to redefine affordance perception for particular locations.

Weight Redistribution Based on Occupancy. ACKnowledge
redistributes the weights of KG after updating the occupancy factor
to reflect the occupancy’s cue for preference. The weight of the
affordance that the object currently affords upgrades to the maxi-
mum weight of all, while others adjust proportionally to maintain
a consistent total weight.

Usage-rights Property Inference. In addition to weight distri-
bution, ACKnowledge infers usage-rights properties based on vision.
The appearance and number of objects hint at usage-rights. Three
plastic chairs will likely be public, whereas one delicate leather
chair will likely be owner-exclusive. ACKnowledge calculates the
variance in the number and clusters of objects belonging to the
same primary object category. If the variance is equal to or greater
than 1.0, K-means clustering (𝑘 = 2) is triggered to distinguish a
unique object and mark it as private in terms of usage-rights.

4.2.2 Affordance Interaction Planning Construction chain.
ACKnowledge also uses the context information in the interaction-
planning reasoning process with an LLM-based retrieval augmented
generation method. Such a RAG-supported reasoning structure con-
tributes to the process understandability (DR4). As shown in Fig. 6,
the process compromises four consecutive steps: understanding the
task, retrieving candidates with real-time environmental updates,
formulating planning candidates, and selecting an optimal plan
based on real-world contexts.

Figure 6: The process of plan construction consists of four
steps: understanding the task, retrieving the candidates, for-
mulating the plans, and selecting optimal planswith contexts.
ACKnowledge provides three candidate plans for each task:
Strict, Negotiation, and Reconfiguration, explained below
Step 3. NL Plan denotes human-friendly natural language
plan,Machine Plan denotes machine execution plan.

Step 1: Understanding the Task.When receiving an instruc-
tion, ACKnowledge uses the LLM (GPT-4o-20240513 supported by

Microsoft Azure, no pretraining, temperature = 0.0, all LLMs be-
low except for logprobs purpose refer to this same setting) to ex-
tract the key affordances, 𝑘1, 𝑘2, . . . , 𝑘𝑛 , with corresponding oc-
cupants, 𝑜𝑐𝑐1, 𝑜𝑐𝑐2, . . . , 𝑜𝑐𝑐𝑛 , implied in the text. Using key affor-
dances extracted by the LLM as input, for each key affordance 𝑘𝑖 ,
ACKnowledge retrieves a list of weighted KG domain affordances,
denoted as 𝐴𝑓 𝑓 (1)

𝑖
, 𝐴𝑓 𝑓

(2)
𝑖

, . . . , 𝐴𝑓 𝑓
(𝑛𝑖 )
𝑖

, with normalized similar-
ity scores based on VerbalPhrase and Affordance node embeddings,
denoted as {KGSimilarity(𝑘𝑖 , 𝐴𝑓 𝑓 ( 𝑗 )𝑖

) | 𝑗 = 1, 2, ...𝑛𝑖 }. To calculate

how accurately can an affordance 𝐴𝑓 𝑓 (𝑎 𝑗 )
𝑖

express the keyword

𝑘𝑖 , ACKnowledge calculate the KeywordSimilarity(𝑘𝑖 , 𝐴𝑓 𝑓
(𝑎 𝑗 )
𝑖

) =
KGSimilarity(𝑘𝑖 , 𝐴𝑓 𝑓

(𝑎 𝑗 )
𝑖

) × LLMSimilarity(𝑘𝑖 , 𝐴𝑓 𝑓
(𝑎 𝑗 )
𝑖

), combin-
ing the KG similarity scoring with an logprobs-based LLM (GPT-3.5-
turbo-instruct, no pretraining, temperature = 0.0) similarity scoring
like in Section 4.2.1. Finally, ACKnowledge selects the most related
key affordances candidates using K-Means clustering (𝑘 = 2).

Step 2: RetrievingCandidateswithReal-time Environment
Updates. ACKnowledge retrieves primary objects, which are the
ones that are directly linked to the selected affordances in the pre-
vious step, and secondary objects, which are less than four steps
away from primary objects. Subsequently, ACKnowledge calls the
selective occupancy detection (4.1.2) only for primary and sec-
ondary objects to save computing resources. Having obtained those
occupancy updates, ACKnowledge redistributes weights (4.2.1) in
the “brain” module. With the updated KG in the “brain” module,
ACKnowledge returns a set of possible candidates linked to the
affordance candidates of the extracted key affordances, each with
a score. For each object candidate 𝑜𝑏 𝑗 ( 𝑗 )

𝑖
that can afford the key

affordance 𝑘𝑖 with 𝑜𝑐𝑐𝑖 as occupant, ACKnowledge calculates its
CandidateScore, a non-zero score indicates the target 𝑜𝑏 𝑗 ( 𝑗 )

𝑖
is va-

cant to afford 𝑘𝑖 with 𝑜𝑐𝑐𝑖 as occupant:

CandidateScore(𝑘𝑖 , 𝑜𝑐𝑐𝑖 , 𝑜𝑏 𝑗 ( 𝑗 )𝑖
) =

AffordableScore(𝑜𝑏 𝑗 ( 𝑗 )
𝑖

) × OccupancyScore(𝑜𝑏 𝑗 ( 𝑗 )
𝑖
, 𝑜𝑐𝑐𝑖 )

(2)

where

AffordableScore(obj(j)i ) =
𝑛𝑖∑︁
𝑥=1

𝑤𝑒𝑖𝑔ℎ𝑡 (𝐴𝑓 𝑓 (𝑥 )
𝑖

, 𝑜𝑏 𝑗
( 𝑗 )
𝑖

) × KeywordSimilarity(ki,Aff (x)
i )

OccupancyScore(obj, occ) =
ObjectSimilarity(obj.occupant, occ)
× OccupancyPotential(obj.fully_occupied)

(3)

The ObjectSimilarity(𝑜𝑏 𝑗 .𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡, 𝑜𝑐𝑐) is embeddings’ cosine sim-
ilarity; The OccupancyPotential(𝑜𝑏 𝑗 .𝑓 𝑢𝑙𝑙𝑦_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑) equals to 1
if 𝑜𝑏 𝑗 .𝑓 𝑢𝑙𝑙𝑦_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 is False, otherwise 0.

Step 3: Formulating Planning Candidates. ACKnowledge em-
ploys an object-based strategy for plan formulation, as depicted in
Fig. 6 Formulating Plans module, outputting natural language plans
and machine execution plans. Based on usage-rights and vacancy
(indicated by the CandidateScore calculated previously), ACKnowl-
edge classifies candidates into three types and then formulates and
evaluates strict, negotiation, and reconfiguration plans.
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• Strict Plans: Directly use the usage-rights-obedient and
vacant target candidates. Plan scores equal to the Candi-
dateScore.

• Negotiation Plans: Ask for the house owner’s permission,
then use the usage-rights-disobedient yet vacant target can-
didates. Plan scores equal to the CandidateScore.

• Reconfiguration Plans: ACKnowledge uses a recursive recon-
figuration method to vacate non-vacant targets by finding
substitute objects for the current affordances of the targets
(see supplementary material Algorithm 1). If substitutes are
occupied, ACKnowledge deepens the search and recursively
creates a reconfiguration plan until a vacant substitute is
found or the search depth reaches the threshold (set to two).
It then retraces steps to generate the complete reconfigu-
ration plan, with plan scores calculated as the product of
the CandidateScore of the final object-affordance-occupant
tuples returned by the algorithm.

Strict plans are optimal solutions based on fixed real-world con-
texts, while negotiation and reconfiguration plans adapt the physi-
cal or interpersonal context for optimal outcomes. We maintained
the intrapersonal context, particularly the human status factor, to
minimize disruption to ongoing activities.

After constructing plans in lists of object-affordance tuples, AC-
Knowledge composes machine execution plans with four basic com-
mands (pick-up, go-to, place, request) and the final target affordance
command by rule-based text generation. We also utilized the LLM
to generate human-friendly natural language plans.

Step 4: Selecting an Optimal Plan Based on Real-world
Context. To incorporate intrapersonal context into optimal plan
selection, we input plan candidates, human status descriptions
(from Section 4.1.2), and selection guidelines into the LLM. Lever-
aging LLM’s natural-language reasoning, ACKnowledge directs the
LLM to prioritize plans based on sensemaking, minimal disruptive-
ness, and high category scores, then selects the most suitable one
across categories. The LLM outputs the optimal plan and stores
alternatives for future reference.

4.3 Interaction between ACKnowledge and the
Users

In real usage, humans interact with ACKnowledge in three phases:
configuration, resolution, and error correction, where configura-
tion happens once while resolution and error correction occur on
demand. Here, we introduce the user interface of the configuration
and error correction phase.

4.3.1 GUI for Personalization in Configuration Phase. We devel-
oped a web app GUI for personalization (Fig. 7). After the room
scans (photos taken during the room tour guided by the user) are
uploaded, users can correct KG construction errors (e.g., amounts)
and configure their household preferences. Based on pilot study
results indicating that users preferred adjusting affordance prop-
erties related to specific objects, we organized functionalities on
the homepage and object pages for better usability. The homepage
displays a visual configuration of the household with an interactive
KG and a dropdown menu listing all household objects and their
default predicted usage-rights properties (Section 4.2.1). Users can

Figure 7: GUI for user personalization during the Configura-
tion Phase, including the registration, home, and object page.
Users register their household by confirming the upload of
the room scan pictures on the registration page. Then, the
home page demonstrates the scene graphwith pictures of the
room, owner-defined usage-rights, and amounts of objects.
Users can then adjust the owner-defined usage-rights and
affordance usage of objects on the home and object pages.

Figure 8: CUI used in error correction process. Wizard-of-Oz
assistance happens when transcribing and extracting key-
words from users’ speech. Users can interact with the AC-
Knowledge in the form of intermediate candidate demonstra-
tion, affordance-based error correction, and plan-selection-
based error correction.

customize their preferences for object usage-rights. By clicking on
an object’s name, users are directed to the object’s page to adjust
their preferences by prioritizing particular affordances (assigning
the highest weight and redistributing the remaining proportion-
ally) or disabling others (setting the weight to zero). Feedback from
pilot users prompted us to offer checkbox options with timely re-
sult displays, which reduce confusion compared to scroll bars. All
changes will then be updated to the corresponding Object nodes or
HaveAffordance relations in KG.

4.3.2 CUI for Error Correction. During the error correction phase,
users interact withACKnowledge through a conversational interface
(Fig. 8), with human wizard only employed for transcribing to avoid
automatic speech recognition error affecting users’ primary focus of
the evaluation. The CUI supports two response types: intermediate
candidate demonstration and error correction. The collaboration of
the two response types helps users locate and fix the error more
efficiently with less effort.



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Ziqi Pan, Xiucheng Zhang, Zisu Li, Zhenhui Peng, Mingming Fan, and Xiaojuan Ma

• Intermediate Candidate Demonstration: Upon queries about
alternative objects or plans, ACKnowledge retrieves candi-
dates from plan construction (Section 4.2.2) Step 1 or suggests
alternative plans from the plan cache of Step 4.

• Error Correction: For affordance correction, users can disable
an object’s affordance realized by ACKnowledge’s setting the
weight of a certain HaveAffordance relation in KG to zero. Re-
garding plan selection correction, if users specify a selection
strategy, ACKnowledge integrates this new strategy into plan
construction (Section 4.2.2) Step 4 (plan-with-mannual-rule
correction). Otherwise, ACKnowledge generates a new selec-
tion strategy using LLM and inserts it into Step 4 (plan-with-
automatic-rule correction). These two types of correction
are distinctive and complementary so that users can easily
opt for one strategy when an error happens, enhancing the
usability of the CUI.

4.4 User Scenario of ACKnowledge
We describe a homeowner, Adam, who uses the intelligent house-
keeping agent supported by ACKnowledge as shown in Fig. 2. Dur-
ing the configuration phase, they tour the agent around, let it scan
the rooms and confirm the upload of its observation to the server
(Fig. 2_C1). The system extracts a subgraph from its knowledge base
(Fig. 2_C0) to create a scene graph, capturing default affordances
and object usage-rights with Adam’s personalization adjustments
and correction of construction errors (Fig. 2_C2). When Adam’s
colleague Belle arrives for dinner, they instruct ACKnowledge to
"Find my guest somewhere to sit" while they cook. The system
scans the living room for available seating (Fig. 2_R1) and iden-
tifies empty chairs stacked in the corner while a jacket occupies
the couch. It concludes that the couch is now used for storage and
suggests the chairs for Belle (Fig. 2_R2). Unsatisfied, Adam asks
ACKnowledge to “move the jacket from the couch to the plastic chair
and invite Belle to sit on the couch” (Fig. 2_E1). The system accepts
their suggestion, moves the jacket to the plastic chair, and invites
Belle to sit on the couch. To improve future planning, ACKnowledge
learns from Adam’s correction and retains this selection strategy
for future reference (Fig. 2_E2).

5 Study 2: Performance Evaluation in
Simulations of Personalized Household

This section presents a two-factor within-subject study that assesses
the execution disambiguity rate and user subjective feedback of an
ACKnowledge-powered agent in a simulated household setting.

5.1 Experiment Design
In this experiment, participants took on the role of the house owner,
Alice, in a simulated household with personalized configurations.
They evaluated three intelligent housekeeping agents by compar-
ing their proposed interaction plans’ potential success rates and
acceptability for different tasks.

5.1.1 Tasks and Simulation Settings.
Simulation of Personalized Household.We set up the simulated
household in a campus dormitory with a living room, a kitchen,
and a bedroom, which imply different social functions. To simulate

Figure 9: The settings of three rooms, labeled with the usage-
rights of objects.

Alice’s household, we add objects with distinguishable appearances
from 62 everyday objects (Section 4.1.1) to each room. We also
simulated Alice’s personalization of the household by assigning
different usage-rights to objects. Two human characters, owner
Alice (who appears in all three rooms) and guest Bob (who appears
in the living room and can only use public objects without Alice’s
permission), are involved. Fig. 9 shows the settings of three rooms
with descriptions.

Instructions and Tasks. As shown in Fig. 10, we first selected

Figure 10: The process of task construction. After extracting
50 common affordances, we clustered them into 13 affor-
dance activity categories and assigned them to each room
according to human desired tasks as investigated in 3.3.1.
Finally, we constructed the 82 tasks with different environ-
mental configurations.
50 commonly used affordances (frequency above or equal to av-
erage) from the object-affordance tuples collected in Section 4.1.1.
After confirming coverage of those in SayCan [3], we clustered
them into 13 general activity categories using GPT-4o-20240513
(no pretraining, temperature = 0.0). Affordances were assigned to
each room based on desired tasks from the formative study. Two
participants, not involved in the study, created instructions for each
room based on these affordances with categories, resulting in 82 in-
structions (27 for the bedroom and kitchen, 28 for the living room).
We developed 82 tasks, with 20 using default room configurations
and 66 featuring updated arrangements and human characters. We
filmed the settings with two actors at fixed angles and evaluated
the agent’s machine execution plan alongside the human-friendly
natural language plan (Section 4.2.2).

5.1.2 ACKnowledge and Baselines.

We compared the agent based on the ACKnowledge framework
with two LM-based agent baselines to explore (1) Is context aware-
ness a must to improve LM-based agents’ performance? (2) Is com-
putational thinking and reasoning architecture making interaction
planning more effective?
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Figure 11: Above figure: The demonstration of the structure
of the two baselines compared with theACKnowledge and the
questionnaire. Below figure: A screenshot of the question-
naire. Users rate three solutions from the three agents based
on textual descriptions and physical environments presented
in video form in the questionnaire.

All three agents first went through the configuration phase (in-
troduced in Section 4.3), simulated by receiving pictures of rooms
and house owner’s personal configurations (usage-rights) as input.
ACKnowledge constructed its own scene KGs upon receiving the in-
put, while the baselines stored it in memory without incorporating
KGs. Proceeding to the resolution phase, each agent then observed
the updated physical environment (through pre-recorded videos)
and generated plans accordingly. As shown in Fig. 11, the architec-
tures are not the same across all approaches. In particular, Baseline
1 lacks context awareness and cognitive architecture, functioning
solely as a VLM without contextual prompts or a Chain-of-Thought
plan construction (i.e., no understanding task -> retrieve object can-
didates -> form and select optimal plan sequence as described in Sec.
4.2.2). In contrast, Baseline 2 incorporates contextual hints in its
prompts but lacks cognitive architecture (e.g., "You should consider
contextual factors such as object occupancy and usage rights ...")
and does not follow the decomposed reasoning chain employed
by ACKnowledge. They all produced the same format outputs: a
machine execution plan and a human-friendly natural language
plan.

5.1.3 Metrics.
We evaluated the agents’ performance with six metrics in Table 1.

Table 1: Metrics for evaluating the agents’ performance.

Type Metric Definition
Objective Execution Disambiguity Rate Can the plan be executed without ambiguity?

Subjective

Plan Successful Can the plan meet the demands of the human’s instruction?
Physically Valid Are the objects involved in the plan perceived functionally valid and vacant?

Usage-Rights Respectful Is the plan using objects respecting usage-rights defined by the owner?
Socially Appropriate Is the plan not burdening/disrupting the social beings and social environment (if any)?
Overall Acceptable Is the plan acceptable overall in the current context?

The execution disambiguity rate and plan successful metrics are
adapted from SayCan[3]. The overall acceptable metric evaluates
general planning-result-oriented acceptability (DR4). The other
three metrics are proposed to evaluate the awareness of the real-
world contexts as instantiated in Section 3.3.2 and required by DR2.

To assess the execution disambiguity rate, we compared the
physical entities automatically parsed from the agents’ machine

plans with those in the room configuration. If all entities are present
(including the ones chosen to accomplish the instruction and others
mentioned in the plan), the plan is execution-wise successful. For
the other five metrics, we collected subjective ratings via question-
naires on a 5-point Likert scale (1 as the worst) from participants.

5.2 Participants and Procedure
With the approval of institutional IRB, we recruited 21 participants
(11 male, 10 female,𝐴𝑔𝑒 = 22.38±1.96) of different majors and occu-
pations from the campus through social media and word of mouth.
None of them have participated in the formative study. Each partic-
ipant spent two hours filling out the questionnaire (compensated
$9 per hour).

Participants first got familiar with the background of the study
in a 15-minute video briefing introducing the general tasks, room
settings, and five subjective rating metrics. Afterward, participants
started to rate the planning resolutions to the 82 tasks given by
ACKnowledge and two baselines. For each task, participants were
presented with videos of the physical environments where the plans
were supposed to take place. The order of the resolutions from the
three methods was shuffled. At last, we collected the ratings from
the 21 participants, each with completion of all 82 tasks.

5.3 Results
This section presents the objective performance and subjective
rating results of ACKnowledge, Baseline 1, and Baseline 2.

5.3.1 Objective Performance: Execution Disambiguity Rate.
ACKnowledge achieved a high 98.78% disambiguity rate in its task
execution with only one failure case caused by a wrong occupancy
detection. By contrast, Baseline 1 and 2 succeeded in 84.15% and
80.49% of the cases. We conducted an error analysis and found that
most errors happened because of ambiguities/hallucinations in the
chosen objects, and three happened because of failing to generate a
plan in five trials, as the generation may have violated the content
policy. The outstanding performance of ACKnowledge proved the
necessity of real-world grounding in visual context understanding
and affordance reasoning.

5.3.2 Subjective Ratings.
Since the ratings do not comply with normal distribution, we con-
ducted a within-subject non-parametric Friedman test followed by
post hoc Wilcoxon signed-rank tests and presented the results in
Fig. 12.

Overall subjective ratings. Using the Friedman test, we com-
pared the performance of ACKnowledge and the two baselines in
terms of the five metrics introduced in Section 5.1.3 of two types of
tasks (with/without environmental update). Both the method and
the task type were found to affect the ratings significantly.

ACKnowledge received the highest ratings in all five metrics.
The pairwise comparisons showed that ACKnowledge significantly
outperformed Baseline 2 in all five metrics while significantly sur-
passing Baseline 1 regarding usage-rights respectfulness, social ap-
propriateness, and overall acceptability. Noticeably, compared with
the second-best methods, the overall acceptability of ACKnowledge
(3.90 ± 0.07) significantly increased by 0.28. Moreover, usage-rights
respectfulness, and social appropriateness increased significantly
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(a) Subjective ratings of ACKnowl-
edge and the two baselines across
five metrics in all tasks.

(b) Significance analysis be-
tween two task types.

Figure 12: Subjective ratings in all tasks and significance
analysis between two task types. The ratings are on a 5-point
Likert scale (1 being the worst). Error bars depict standard
errors. Friedman test was employed for more than two types
of methods, and post hoc Wilcoxon signed-rank tests were
used to assess specific pairwise differences. Significance val-
ues are reported for p < .05 (*) and p < .01 (**) after one-step
Bonferroni correction, abbreviated by the number of stars.
We calculated and presentedHedges g as effect size indicators
for significant comparisons.

by 0.16 and 0.15. Such improvements undermined that ACKnowl-
edge has enhanced awareness of human-factors-related contexts,
contributing to more acceptable interaction planning.

Baseline 1 outperformed Baseline 2 significantly regarding plan
success and physical validity yet fell behind or showed no signif-
icant difference regarding usage-rights respectfulness and social
appropriateness. Interestingly, both baselines were rated similarly
regarding overall acceptability. This trade-off between metrics im-
plies that metrics related to human sentiments, such as usage-rights
respectfulness and social appropriateness, more strongly influenced
perceived acceptability.

Subjective ratings in different task types Significant differ-
ences were found between the task types in terms of all five metrics.
Thus, we further analyzed results within each task type (Fig. 13).

Figure 13: Subjective ratings in different task types. The rat-
ings are on a 5-point Likert scale (1 being the worst). Error
bars depict standard errors. Friedman test was employed for
more than two types of methods, and post hoc Wilcoxon
signed-rank tests were used to assess specific pairwise differ-
ences. Significance values are reported for p < .05 (*) and p <
.01 (**) after one-step Bonferroni correction, abbreviated by
the number of stars.We calculated and presented Hedges g as
effect size indicators for significant comparisons. B1 denotes
Baseline 1 and B2 denotes Baseline 2.

In tasks without environment updates, significant differences
between the methods were found. ACKnowledge performed best
overall (4.07 ± 0.07), with Baseline 2 as the second (4.00 ± 0.07).
ACKnowledge rated all-round highest but found no significant dif-
ference with Baseline2 in all metrics in pairwise comparisons. In
addition, there is no significant pairwise difference between Base-
line1 and Baseline2 regarding plan success and physical validity.
Thanks to the context awareness during both the configuration and
the resolution process, Baseline2 performed as well as ACKnowl-
edge. However, Baseline 1 did not perform well because context
awareness was not noted in the resolution process.

In tasks with environment updates, there were also significant
differences between the methods regarding all five metrics. AC-
Knowledge remained the best significantly regarding overall accept-
ability, but Baseline 1 became the second best with no significant
favor shown over Baseline 2. In the other four metrics, no signif-
icant difference was found between ACKnowledge and Baseline
1 regarding plan success, physical validity, and social appropri-
ateness. The result that Baseline 1 excelled over Baseline 2 while
performing nearly as well as ACKnowledge requires attention. One
reason is Baseline 1’s lack of context awareness, which allowed it to
exploit affordance possibilities more effectively. Being not sensitive
to the predefined preferences and the updated object vacancy, it
ignored some restrictions and found valid candidates to generate
feasible plans. Another reason is that Baseline 2’s strict obedience
to context-based rules limited its reasoning capabilities. Baseline
2 struggled to propose alternative reconfiguration or negotiation
plans without a cognitive reasoning architecture when the best
candidate was not directly usable, unlike ACKnowledge.

6 Study 3: Exploring the Understandability and
Usability of ACKnowledge in Real-world
Settings

To explore the potential of ACKnowledge’s planning process to
be understood and adapted by humans via usable interfaces, we
conducted a case study inviting participants to interact with a
Wizard-of-Oz agent built upon ACKnowledge.

6.1 Experiment Design
The study took place in a real home with a kitchen, living room, and
bedroom, consisting of three phases: plan process demonstration,
error correction, and personalization. In the demonstration and
error correction phase, the household configurations were inherited
from Alice’s household in the simulation study, with participants
acting as Alice. The ACKnowledge-based agent had knowledge
of the environment settings and personalizations, as outlined in
Section 5.1.1. In the final personalization phase, participants viewed
the household as their own, allowing them to customize it while
the agent completed tasks based on their configurations.

We measured understandability (DR4), trust (DR4), negotiability
(DR3, DR4), and adaptability (DR3, DR4) in the planning process,
along with the usability of interactive interfaces (DR4) through
interviews. Additionally, we assessed planning outcomes after error
correction and personalization using subjective ratings based on
the metrics described in Section 5.1.3. Detailed tasks for each phase
are available in the supplementary materials.
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6.1.1 Demonstration phase.
In this phase, participants wore VR glasses to experience the in-
teraction planning process of an intelligent agent in Augmented
Reality. We selected three interaction planning tasks (one per room)
where ACKnowledge’s solutions were rated as acceptable from the
simulation study to demonstrate ACKnowledge’s planning process.
After participants assigned tasks to the agent, the agent moved
around and voiced its planning based on the intermediate result
of ACKnowledge. Having watched demonstrations in all rooms,
participants were interviewed to interpret the planning process in
their own sense and provide feedback on its understandability and
trustworthiness.

6.1.2 Error-correction phase.
After users interpreted how ACKnowledge worked, we investigated
its negotiability with an error correction study. We selected three
tasks (one per room) where ACKnowledge’s solutions were rated
unsatisfactory regarding physical validity and/or social appropri-
ateness in the simulation study (Section 5). For each task, we asked
to rate the original plan solution using metrics from Section 5.1.3.
If dissatisfied, they could communicate with the agent through the
CUI (Section 4.3.2). Based on user feedback, the agent adapted its
reasoning in real-time to propose better solutions (improved plan),
which participants then rated. Finally, we created a similar task for
ACKnowledge to solve and invited participants to rate it to test if the
agent could automatically transfer the adaptation (transferred plan).
We compared participants’ ratings of the three plans to evaluate
error correction outcomes and interviewed them about the usability
of the CUI and negotiability in the error correction process.

6.1.3 Personalization phase.
In the final personalization phase, participants personalize their
homes after arranging objects as desired. After participants guided
the agent through the household and confirmed the upload of its
room scans to the server (simulated by photos taken under their
instruction), they used the personalization GUI (Section 4.3.1) to set
their preferred usage-rights and affordances. An interview followed
to gather their feedback on the adaptability of the personalization
process and the GUI’s usability. Participants then chose their appear-
ances in the rooms. The agent observed the environment through
real-time video capturing and planned interactions for the same
three tasks from the demonstration phase. Participants evaluated
these new interaction plans with ratings and assessed the process’s
adaptability and the alignment of outcomes with their personaliza-
tions through interviews.

6.2 Participants and Procedure
Approved by institutional IRB, we recruited 9 participants (5 male,
4 female, 𝐴𝑔𝑒 = 22.56 ± 1.71, denoted as U1-U9) from the campus
through social media and word of mouth. None of them participated
in the formative study, ensuring they had no previous knowledge
of the potential structure of ACKnowledge.

After a short briefing, the participants participated in the order
of demonstration, error correction, and personalization phase (as
shown in Fig. 14). They first wore VR glasses to interact with the AR
agent during the demonstration phase to enhance their understand-
ing of the agent’s real-world usage. Once they grasped the process,

(a) A User’s first-person view
through VR glasses during the
demonstration phase.

(b) A user was in the demonstra-
tion phase.

(c) A user was in the error cor-
rection phase.

(d) A user was in the personal-
ization phase.

Figure 14: Actual scene photos from the case study.

participants completed the remaining phases without VR glasses.
The study lasted 1.2 hours, with each participant compensated $12.

6.3 Results
6.3.1 Demonstration Phase. We conducted a thematic analysis on
the participants’ interpretation of ACKnowledge’s reasoning pro-
cess, following the procedure in the formative study (3.3). The par-
ticipants could describe ACKnowledge’s rationales in their words
and recognized its planning process as being context-aware with
evolving reasoning.

More specifically, the participants thought that ACKnowledge
captured physical, intrapersonal, and interpersonal contexts
in its planning process, acknowledging "the consideration of
whether this object can execute such task" (U1-U9), "the possibil-
ities provided by the environment" (U3, U6), "social factors that
involved humans’ activities, identities, etc." (U1, U3, U4), and "the ap-
plication of usage-rights to filter out some candidates" (U2, U3). All
participants (U1-U9) agreed that ACKnowledge chose the most
contextually acceptable plan based on its standards. Everyone
grasped the overall strategy employed by the agent. Four (U3, U6,
U7, U9) noticed the process of locating key affordance implied by
the task. Only one participant (U2) found the intermediate steps
confusing due to his expectation of explanation for detailed reason-
ing. U6 mentioned the subjectivity of an "optimal" plan, indicating
the need for ACKnowledge to be communicative and personalizable
during planning. All participants concurred that the planning
process of ACKnowledge was reasonable, some indicated that
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Figure 15: Subjective ratings of ACKnowledge in original
plans, improved plans, and transferred plans on similar tasks.
The ratings are on a 5-point Likert scale (1 being the worst).
Error bars depict standard errors. Friedman test was em-
ployed for more than two types of methods, and post hoc
Wilcoxon signed-rank tests were used to assess specific pair-
wise differences. Significance values are reported for p < .05
(*) and p < .01 (**) after one-step Bonferroni correction, abbre-
viated by the number of stars. We calculated and presented
Hedges g as effect size indicators for significant comparisons.

reasonability enhanced the trust. U3 and U9 found it "similar to
human reasoning." while U1 and U7 echoed, "the clear planning
process makes the agent seemingly more trustworthy and help-
ful." However, several noted that "ACKnowledge overthinks than
humans" (U1, U4, U6). They argued that when selecting candidates,
humans relied more on experience-based intuition. This aligns with
dual-process theorists’ opinion that "expert knowledge" can lead to
more intuition than deliberate reasoning in planning [56]. Thus, an
agent may require a more powerful intuitive thinking system for
affordance-based interaction planning tasks.

6.3.2 Error Correction Phase. We collected participants’ subjective
ratings of the original, improved, and transferred plans on a sim-
ilar task regarding five metrics in Section 5.1.3. We conducted a
within-subject non-parametric Friedman test followed by post hoc
Wilcoxon signed-rank tests and presented the results in Fig. 15.

Overall, we found significant differences between the three types
of plans across all metrics, except for respecting owner-defined
usage-rights, as no plan violating this was selected. In pairwise
comparison, the improved plans (4.55 ± 0.10) scored significantly
higher in overall acceptability than the original plans (3.04 ± 0.23),
with significant improvements in physical validity (from 3.55± 0.32
to 4.70 ± 0.12) and social appropriateness (from 3.44 ± 0.24 to
4.59 ± 0.16). The great standard deviation of the original plans’
ratings reflected participants’ diverse opinions when judging plans.
In addition, the transferred plans to similar tasks received higher rat-
ings (4.94± 0.23 in overall acceptability) than the improved plans in
all metrics though not significant. They significantly outperformed
the original plans in planning success, physical validity, and social
appropriateness (Fig. 15). This demonstrates that the ACKnowl-
edge agent effectively learned from corrections and transferred this
knowledge to similar tasks.

Our thematic analysis revealed that all participants were sat-
isfied with negotiating and making necessary rectifications

with the agent, appreciating its responsiveness to their de-
mands. It is interesting to note that, although the reasons why the
original plans were rated poorly varied among individuals, ranging
from social inappropriateness to questionable physical validity, the
participants generally agreed that their concerns were addressed
in the improved and transferred plans. Participants also pro-
vided insightful advice on further enhancement. They suggested
that agents should self-learn from their ownmistakes (U3, U5,
U8). As U8 stressed, "It is good for ACKnowledge to gain knowledge
from its error and the correction automatically."

This expectation was also reflected in the participants’ choice
of error correction methods. We compared the usage of affor-
dance correction, plan-with-mannual-rule correction, and plan-
with-automatic-rule as mentioned in 4.2.2. Only two participants
(U1, U4) attempted affordance correction. In contrast, others pre-
ferred making plan selection corrections. After reviewing alterna-
tive plans provided by the agent, most participants favored auto-
matic rule generation for plan corrections, with only two choosing
manual rule insertion.

6.3.3 Personalization Phase. Through behavior analysis, we first
examined the types of personalization participants engaged in dur-
ing this phase. All adjusted the usage-rights of objects, but only
two (U2, U5) modified the affordance usages. The thematic analy-
sis further revealed that our participants regarded the adjustable
features (usage-rights and affordance usages) provided as ap-
propriate with acceptable interfaces. Those who did not modify
the affordance functions considered this feature to be “dynamic
and task-sensitive” (U1) and could be “changed later based on actual
situations” (U1). This aligns with our formative study findings that
participants prefer agents to adapt to human habits gradually in real
practices. The participants also confirmed that ACKnowledge’s
default perception of these features aligned with common-
sense, though incomplete (U1, U2, U3, U5, U9). They suggested
that the default settings include diverse criteria like position (U5),
hygiene requirements (U5), and object lifespan (U6). Additionally,
some participants advocated more dynamic personalization options
that adapt as tasks evolve, reflecting changing personal preferences
(U1, U3).

Furthermore, the new interaction plans in the personalized home
setting were rated highly acceptable overall (4.67 ± 0.17). In qual-
itative feedback, all participants thought the new plans were
updated correctly to fit the new household settings.

7 Discussion
We summarize key findings from our studies as below:

• Formative Study: Proposed DRs and instantiated computable
factors in terms of physical, intrapersonal, and interpersonal
contexts

• Study 2 - Simulations: ACKnowledge achieved a higher task
execution disambiguity rate and significantly improved over-
all acceptability, particularly in usage-rights respectfulness
and social appropriateness. Comparisons with baselines in
tasks with/without environment updates highlighted the
importance of context awareness and cognitive architecture
for generating acceptable plans.
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• Study 3 - Real-world settings: The planning process was
evaluated by users as understandable, adaptable, and usable.
Their behaviors and feedback indicated a preference for di-
rect, user-friendly interfaces that require less manual input
and offer greater personalizabilities.

Based on the findings, this section first discusses how our pro-
posed ACKnowledge enhanced human-compatible interactions. In-
spired by ACKnowledge’s performance in our studies, we identi-
fied future directions for more comprehensive and user-friendly
frameworks aiming at long-horizon interaction planning. Lastly,
we present the limitations and future works of this paper.

7.1 Towards Human-Compatible
Agent-Environment Interaction

This paper conceptualizes human-compatible agent-environment
interaction planning as a combination of acceptable planning results
and an understandable planning process. Below, we reflect on the
importance of these two elements.

7.1.1 Human Compatibility Ensured by Acceptable Outcome. In
the results of our simulation study (Section 5.3), overall accept-
ability (3.90 ± 0.07) of ACKnowledge is lower than plan success
(4.13 ± 0.09), and physical validity (4.22 ± 0.10), with significant
gaps found (𝑝 = .019, 𝑝 = .006). Therefore, physically sound plans
may not necessarily receive the same level of psychological accep-
tance. Results also showed that enhancing human-factors-related
metrics like usage-rights respectfulness and social appropriateness
contributed to more acceptable interaction planning. This aligns
with previous research [28] emphasizing the need for both physical
safety and psychological comfort in human-agent cooperation.

Humans’ emphasis on psychological acceptance may stem from
the enactive account of cognition, where they perceive environ-
ments based on what they can do [84]. Modern theories describe
this process of unfolding possibilities for action as situated imagi-
nation [110]. When evaluating interaction feasibility with situated
imagination, humans assess physical validity from a third-person
view while considering psychological acceptance to ensure appro-
priateness from a first-person perspective [77]. Embodied with
commonsense knowledge of affordance and awareness of context
factors aligned with humans, ACKnowledge enhanced such psycho-
logical acceptance, thus improving human compatibility.

7.1.2 Human Compatibility Facilitated by Transparent Planning
Process. While some researchers argue that the planning process is
irrelevant to system users once results are satisfactory [75], others
emphasize the importance of explainability and personalization
through the interactions in the planning process. Thellman et al.
[109] highlighted the importance of robots’ explainability in social
human-robot interactions, particularly regarding robots’ beliefs and
perceptions of environments. Lee et al. [64] concluded the benefits
of personalization in terms of improving humans’ satisfaction, rap-
port, cooperation, and engagement with the robots. Extending on
these works and supported by the positive feedback from humans
interacting with ACKnowledge, which enhances explainability and
personalization through its "brain" module that computationally
models human cognition 4.1.1, we postulate that transparency in

planning improves human compatibility, particularly by fostering
these two qualities.

There is no single optimal solution for all users in many scenar-
ios. In the error correction phase of our case study, we observed
that some participants accepted a proposed solution while others re-
jected it. For example, when the agent suggested using the owner’s
beige towel to clean broken glass, two participants agreed, seeing
no restrictions implied by owner-exclusiveness, while seven de-
clined due to hygiene concerns. This highlights the need for users
to define and communicate their own optimal solutions. Black-box
AI models (e.g., [46]) often rely on iterative training with sufficient
input data covering different situations. In contrast, a transparent
system like ACKnowledge incorporates user preferences from the
start to prevent misalignment in planning, which is more data-
efficient and communication-efficient [58, 78, 105, 115]. For one
thing, a process aligned with human cognition enables users to
identify errors in ACKnowledge and make direct corrections with a
single-shot reference to the specific step(s) where errors occur (see
Section 4.3.2). For another, such a system also allows users to access
intermediate results, enabling them to select preferred alternatives
without waiting for new plans to be fully generated, which is more
cost-efficient. All these advantages boost personalization efficiency
and increase users’ trust in the agents. Several participants were
surprised by ACKnowledge’s ability to provide alternative plans and
transfer the single-shot corrections to new tasks. As U8 noted, “As
long as it seems to understand what I meant, I can trust it more,” a
sentiment echoed by four others.

7.2 Directions for Future Development of
ACKnowledge-like Intelligent Agents

7.2.1 Multimodal awareness of real-word contexts. In the current
implementation of ACKnowledge, we only considered factors that
could be captured through visual detection or manual input (e.g.,
occupancy and usage-rights) and subsequently included them in
the computational reasoning. While ACKnowledge outperformed
baselines in affordance planning using the provided contextual
information, we recognize the need to leverage broader contex-
tual factors to enhance practical feasibility in robot deployments.
Specifically, incorporating factors such as the physical properties
of objects (e.g., mass, material) and environmental configurations
(e.g., object positions, navigable pathways) can ensure that selected
objects are accessible to the agents from their current location and
practically feasible for the intended tasks. Feedback from partici-
pants also highlighted this need, for example, “I may imply some
usage-rights preference by the position of objects” (U4) and “Can this
agent know the weight of the objects?” (U1). One possible approach
to achieving this is improving the “vision” module with multimodal
contextual sensing and understanding [93, 122, 123]. Advanced
sensing techniques [87, 99] that can capture richer contextual in-
formation to update KG structure and node properties [38] include
but are not limited to capacitive proximity sensor [12], ultrasonic
human activity sensor [40], piezoresistive pressure sensor [16])
and multimodal foundation models [66]. In addition, using 3D ob-
ject sensors and scene reconstruction algorithms, we can model
the environment as a 3D scene graph (e.g., [81, 94, 101]). This will
enable path and motion planning with spatial information rather
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than merely validating the feasibility of affordance choice at the
destination.

7.2.2 Temporal-Spatial Long-horizon Interaction Planning. AC-
Knowledge showed the satisfactory capability of planning object
interactions in independent tasks (Section 5.3) with the potential
to extend to planning long-horizon interactions. Human interac-
tions are relational and influenced by both time and space [51].
From a temporal viewpoint, future agents should be able to plan a
series of interactions for long-horizon tasks in the evolving “land-
scape” [91, 128]. For example, when “arranging a dinner party”,
they should consider how earlier actions might alter the environ-
ment (e.g., occupancy, location, etc.) for subsequent activities. The
agents have to balance the trade-offs to ensure plausible outcomes
in each step and the whole interaction sequence while maintaining
transparency and adaptability throughout the process [27, 100]. Suc-
cessful long-horizon planning will also accumulate data on users’
preferences and habits under multiple constraints and objectives,
helping agents self-train their planning models to better adapt to
human characteristics. From a space perspective, future agents can
extend ACKnowledge’s ability to plan interactions beyond house-
holds (e.g., workplaces, restaurants, etc.) and across locations, allow-
ing for interaction without geographical constraints. For instance,
when asked to make coffee for the host, an agent should find, clean,
and use the host’s usual cup instead of fetching a new one each
time. This necessitates the agent tracking object locations and un-
derstanding individual and social preferences for object use and
arrangement [46, 67]. With such capabilities, future agents could
offer users a more connected and convenient experience across
environments.

7.2.3 Interaction potential between intelligent agents and users.
User-friendly interaction with the agent. In the case study, we
offered the users a personalization web app GUI with simple text or
button input and a keyword-based error correction CUI. While par-
ticipants appreciated the functionality of ACKnowledge’s interfaces,
they suggested improvements for user-friendliness. They would
like to explain their preferences and rectify undesirable actions by
show-and-tell as they walk the agent through the environment.
Existing research also indicates that simple demonstrations in daily
activities [98] and sparse feedback [89] enhance usability. “It is
better if I can tell them my demands just in a few sentences” (U1, U5,
U9). In this way, users can directly showcase their demands with
less mental load, leaving the work of interpreting humans’ needs
and intentions to the agents.

Multi-user interaction with the agent. In both the design and
the evaluation of ACKnowledge, we mainly focused on the subjec-
tive ratings of the homeowner and received satisfactory responses
(Section 5.3). However, shared environments include individuals
with diverse identities and preferences. Users may prefer different
solutions for the same planning task based on their emphasis on
various criteria. As shown in the results from Section 6.3.2, users
often interpret the importance of each metric differently when eval-
uating a plan. Additionally, they may favor different interaction
styles (verbal v.s. physical [108], interaction distance [96]) with
the agent. Intelligent agents should accommodate all users and
minimize conflicts over preferences.

They should also promote positive interactions between humans
sharing the environment [42, 61], which has long been recognized
in Human-Agent Teaming practices [83], such as reminding users
about others’ disliked behaviors. As participant P11 suggested, “I
would like the agent to plan some activities that can improve my
relationship with my guest.” Thus, extending ACKnowledge to meet
the varied needs of multiple users is crucial and warrants further
research.

7.3 Limitation and Future Works
This work has several limitations. First, we developed the founda-
tional affordance commonsense knowledge graph (KG) that sup-
ports the perception and reasoning ofACKnowledge solely using the
ObjectUse tuples from the ATOMIC2020 dataset [52]. This single-
source KGmay be incomplete (e.g., missing object/affordance nodes
and other types of relations) and biased by the available crowd-
sourcing data. Additionally, the KG-based reasoning approach in
our work relies primarily on retrieval. Second, we conducted an
imaginary formative study with a simulation evaluation and a case
study using an AR agent instead of a real robot. In the scope of this
paper, we explored how a robot’s mind should function in interac-
tion planning. We did not consider actual robot motion capabilities
and factors beyond household tasks. Third, our studies instructed
the participants to assume that all the information floating through
ACKnowledge was secure and privacy-preserving without investi-
gating their perception of risks and potential protective measures.
Additionally, the generalizability of our results is constrained by
the small sample sizes and the narrow age range of participants.

To overcome these limitations, in the future, we will incorporate
data frommore diverse sources (e.g.,Wikidata [111], Visual Genome
[63]) and integrate subjective relations, such as human intentions,
to construct a KG in line with human perception and cognitive
structure. We plan to use recent LLMs with enhanced commonsense
reasoning to update our KG with emerging objects and affordance,
such as by suggesting links and weights based on similarity with
existing nodes and edges. Besides, LLMs can prompt action plans
according to inferred user intentions without explicit instruction.
For instance, agents may suggest "setting the table" when a user
mentions hunger.

Furthermore, we plan to deploy ACKnowledge on real robots,
with privacy protection and security of personal information taken
into consideration, to validate our findings on user expectations of
agents. Participants will instruct a robot to carry out affordance-
based tasks and evaluate its plans and executions with metrics
employed in this paper. The results will verify the effectiveness
of various system components built upon the formative findings.
We will also conduct interviews to assess whether the robot meets
expectations and gather insights for future improvement. Finally,
we aim to expand our participant groups with more task scenarios
in future studies to enhance the generalizability of our results.

8 Conclusion
In this work, we conducted a formative study identifying the phys-
ical, intrapersonal, and interpersonal contexts that count to house-
hold human-agent interaction. Extending the existing emphasis
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on explainability and personalizability in social human-robot in-
teraction research, we then proposed ACKnowledge, a computa-
tional framework integrating a dynamic knowledge graph, a large
language model, and a vision language model as the “brain” and
“vision” to articulate the dual-process reasoning with retrieval aug-
mented generation for affordance-based interaction planning in
dynamic human environments. ACKnowledge demonstrated accept-
able planning results through an understandable process through
evaluations. In real-world simulation tasks, it attained high execu-
tion disambiguity and overall acceptability, significantly improving
respect for usage rights and social appropriateness compared to
baseline models. Feedback from the case study highlighted AC-
Knowledge’s ability to negotiate and personalize within an under-
standable planning framework. This work offers valuable insights
into human-compatible agent-environment interactions, merging
cognitive theories with human perceptions and inspiring future
advancements in human-agent coexistence.
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