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Abstract
Voice agents can construct meaningful conversations with older
adults to offer various benefits, such as providing emotional com-
panionship and assisting with memory recall. However, such con-
versations often follow the simple turn-taking pattern and lack
interruption and backchannel of natural human conversation. Pre-
vious research has shown that this rigid turn-taking pattern lacks
interactivity and initiative, limiting the flexible communication
between older adults and voice agents. To address these issues
and create a more natural conversational voice agent, we first con-
ducted a formative study to identify common usage of interruption
in the natural conversations of older adults. We then designed
an LLM-powered Barge-in agent that supports interruption and
backchannel. Our within-subject exploratory study showed that
participants felt that conversations with Barge-in agents were more
natural, engaging, and fluent than with the No barge-in agent. We
further present design implications for creating more natural and
human-like voice agents for older adults.
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1 Introduction
Social isolation and loneliness are major risk factors for many older
adults that negatively affect both physical and mental health, lead-
ing to conditions like depression, reduced quality of life, and even
increased mortality [27, 54, 64, 65]. With the continuous progress
of voice user interfaces, some voice agents designed for older adults
are emerging. For example, Alexa’s Ask My Buddy and Google
Assistant’s Vigil Connect, both developed based on traditional lan-
guage models, can provide certain levels of emotional compan-
ionship help for older adults [37, 50, 51, 76, 82]. Compared with
text conversation, older adults prefer direct voice interaction for
conversations because it is more intuitive than touchscreens and
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Figure 1: (a) The participant was engaging in a conversation with the Barge-in voice agent designed for older adults, which
supports interruptions and backchannels; (b) The older adult interrupts the Barge-in Agent and asks it to repeat what it has
not heard; (c) While the older adult is speaking, the Barge-in Agent responds with backchannels like "yeah, yeah" as a listening
response; (d) The Barge-in agent initiates a co-operative interruption to help the older adult complete the conversation; (e) The
Barge-in Agent detects the older adult’s silence and actively interrupts it by initiating a conversation.

keyboards, requiring neither precise hand-eye coordination nor
extensive learning. This ease of use also makes it simpler for older
adults to access information and services through voice agents
[4, 75].

Prior to the advent of large language models (LLMs), academic
research on voice agents designed for older adults primarily fo-
cused on task-oriented interactions, such as information search,
reminders, and other specific tasks. Conversational companion-
ship was typically a secondary function, as these traditional voice
agents relied on limited language models that lacked the complex-
ity and depth needed for more dynamic, human-like interactions
[58, 67, 70, 88, 101]. With the rapid development of LLMs, such as
OpenAI’s ChatGPT, agents have gained significant improvements
in the ability to generate contextually aware and natural conversa-
tions. These LLM-powered agents have narrowed the gap between
human language and machine-generated responses, resulting in
more fluid, natural interactions [91]. Furthermore, multimodal mod-
els like OpenAI’s Whisper, Google’s AudioPaLM, and Microsoft’s
Azure Cognitive Services have enabled voice agents to produce
speech outputs with richer emotional and rhythmic tones [11, 81].
These advances present new opportunities for creating voice agents
tailored to the needs of older adults, which may be designed to offer
more personalized and socially aware interactions.

Despite significant technical advancements in natural language
processing, there are still notable challenges in developing voice
agents that effectively engage older adults. One of the more critical
issues is that current voice agents still primarily rely on rigid turn-
taking protocols, commonly called the "speak-wait/speak-wait"
mode, in which one party speaks while the other waits. This linear
approach contrasts sharply with natural human-human conver-
sations, which often involve interruptions and backchannels that
maintain the flow of dialogue [3, 6, 91]. The traditional voice agent
presents four notable limitations for older adults. Firstly, during user
turns, it necessitates the construction of complete sentences and full
organization of thoughts prior to speaking. However, older adults

often prefer utilizing shorter, less complex sentences and frequently
rely on ambiguous expressions [13, 52, 86, 107]. Secondly, during
the voice agent’s turns, the decline in hearing and communication
abilities among many older adults hinders their effective compre-
hension of complex conversations [84]. Consequently, they often
require questions or repetitions to ensure accurate information
grasp. Nevertheless, the model typically employs a simplex com-
munication protocol, which is a one-way communication method
where the system only receives input from the user without permit-
ting real-time interruptions or corrections, thereby impeding this
function [107]. Thirdly, older adults require more time to adapt and
are prone to making mistakes when using traditional turn-taking
agents [97]. Their tendency to speak more slowly can lead to the
system incorrectly assuming the end of input during pauses within
a sentence, resulting in incomplete or failed conversations. More-
over, the inability to interrupt or correct the voice agent in a timely
manner can cause frustration [49, 104, 107]. Lastly, current voice
agents in the voice modal commonly lack backchannels, leading to
a deficiency in interactivity and sociability [17, 31, 44]. Additionally,
these systems frequently utilize simple Voice Activity Detection
(VAD) to detect the conclusion of a user’s speech, and when the
user remains silent, the voice agent does not initiate further con-
versation. This silence can be more readily triggered in older adults
compared to younger individuals due to their unfamiliarity with
the system or incorrect usage [60, 96].

Furthermore, while some products like Hume’s EVI andMoshi AI
allow users to interrupt agents, these interruptions remain largely
one-sided (only the user interrupts the machine), with no mecha-
nism for the voice agent to initiate or manage interruptions, limiting
the interaction’s naturalness and fluidity. More importantly, these
designs do not specifically consider the needs of older adults, who
may require more accessible interactions [83] .

To address these issues, we sought to explore how to design a
voice agent, empowered by LLMs, that supports interruptions and
backchannels for older adults, while also examining the natural
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conversational experiences it provides to older adults. Specifically,
we investigated the two research questions (RQs):

• RQ1: What design considerations are needed for a voice
agent that supports interruptions and backchannels for older
adults?

• RQ2: What kind of conversation experience will a voice
agent that supports interruptions and backchannels bring to
older adults?

To address RQ1, we conducted a formative study where older
adults (𝑁 = 8) engaged in human-to-human conversations, retro-
spective interviews, and interactions with a turn-taking LLM agent.
We gathered participants’ feedback, which provided insights into
their conversational behaviors and expectations for agents that can
support such dynamics.

Based on the interruption classification by Murata et al. [62],
we analyzed the attitudes and evaluations of older adults toward
the five different types of interruptions. Combined with their feed-
back on traditional voice agent interactions, we derived five design
considerations (DCs) for developing voice agents that support in-
terruptions and backchannels for older adults. Based on these DCs,
we developed an LLM-powered Barge-in Agent that focuses on
the natural conversation needs of older adults. It implements a
series of age-friendly adjustments, such as prioritizing co-operative
interruptions to help older adults complete their turns, using sim-
plified structures during interruptions to prevent overwhelming
them with complex prompts, and offering customizable settings for
interruption timing and frequency to accommodate their slower
speech patterns.

To address the RQ2, we employed a within-subject design (𝑁 =

16), comparing two conditions in a counterbalanced order: a Barge-
in Agent, which is a duplex communication agent equipped with
four interruption features (Agent-Initiated Interruptions,Backchan-
nel Responses, Interrupting User Silence by Initiating Con-
versation, and User-Initiated Interruptions), with these details
illustrated in Figure 1. And a No Barge-in Agent serving as the
control condition, which is a simplex communication agent us-
ing a traditional turn-taking model. Participants interacted with
both voice agents, allowing us to assess the impact of interruption
mechanisms on user interaction. We found that the Barge-in Agent
offers several key advantages for older adults, enhancing both en-
gagement and conversational flow. More specifically, interruptions
increase the frequency of interaction and allow broader topic explo-
ration, while backchannels create a more realistic conversational
experience and reduce the perception of waiting time. The ability of
older adults to interrupt the voice agent gives them greater control,
reducing frustration. Co-operative interruptions provide support
by clarifying or supplementing information, helping maintain a
smooth flow of dialogue. Additionally, the voice agent’s ability to re-
duce response delays and proactively initiate conversation prevents
awkward silences, ensuring continuous engagement.

In summary, this paper makes the following contributions:

• We proposed a series of DCs aimed at developing more nat-
ural and human-like LLM-powered agents for older adults
that support interruptions and backchannels.

• We designed an exploratory Barge-in Agent based on LLMs,
featuring four key functionalities: agent-initiated interrup-
tions, backchannel responses, proactive initiation of conver-
sation to break user silence, and support for user-initiated
interruptions.

• We validated that older adults experience greater conversa-
tional engagement and fluency when interacting with voice
agents that support interruptions and backchannels com-
pared to voice agents that do not support these features.

This study not only explored the conversational patterns of voice
agents for older adults, but also provided potential directions for
future age-friendly voice interaction design.

2 Background and Related Works
2.1 Turn-taking, Interruptions and

Backchannels
Most voice agents currently follow a strict alternating dialogue
model, also known as turn-taking protocol, where one party speaks
while the other waits [1, 6, 92]. This model relies on techniques like
wait time, syntax analysis, and context understanding to detect the
end of a turn, signaling when the system should respond [35, 55, 56].
However, human-to-human conversations are far more dynamic,
often involving interruptions and backchannels that contribute to
the fluidity and naturalness of the interaction, rather than strictly
adhering to turn-taking protocols.

2.1.1 Interruptions. In conversation, an interruption is defined
as an intentional act by one conversational participant to break
into another’s speech. This typically occurs at a non-transition-
relevance place, where the speaker has not yet completed their
turn or reached a natural transition point. Previous research has
shown that interruptions play a critical role in human-computer
interactions [8, 87]. Matsusaka et al. designed a multimodal agent
capable of monitoring multi-user dialogues, interrupting when
corrective information needs to be provided. However, they did not
explore the user experience in this context [57]. Similarly, Palinko et
al. demonstrated that using a prediction-based interruption model,
combined with non-verbal signals, improved the user acceptance
of robotic participation in multi-person conversations [72]. Despite
these advances, the design of interruptions for single-user and robot
conversations remains a critical challenge.

Interruptions themselves have been classified into several types
based on their function and impact on the conversation. Early stud-
ies, such as those by Beattie et al., categorized interruptions by
turn transition intensity, distinguishing between types like silent
interruptions and butting-in interruptions [7, 22]. Later, Roger et
al. differentiated between interruptive speech (e.g., intrusive in-
terruptions that disrupt the conversation) and non-interruptive
speech (e.g., supportive overlaps aimed at assisting the speaker)
[79]. Murata et al. further refined this classification, categorizing
interruptions based on their supportive or competitive nature into
co-operative interruptions and competitive/intrusive interruptions.
The latter category is further subdivided into three types: topic-
changing interruptions, floor-taking interruptions, and disagree-
ment interruptions [62]. However, human-human conversational
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behavior changes with age [28, 86], and there is a lack of research on
older adults’ preferences for these different types of interruptions.

2.1.2 Backchannels. Backchannels are brief responses (e.g., "uh-
huh," "yeah") that the listener uses to show that they are listen-
ing and understanding, and to encourage the speaker to continue
talking without interrupting the flow of the conversation. More
recently, the role of backchannels in voice agents has been studied
in greater detail. Lala et al. developed an attentive listening system
based on a humanoid robot, integrating continuous backchannels
with responsive dialogue to maintain the flow of conversation [45].
Ding et al. categorized backchannels into reactive (e.g., "hmm")
and proactive (e.g., "please keep going") and created a voice agent
named TalkTive, demonstrating that participants preferred proac-
tive backchannels over reactive ones [16]. In another study, Cho et
al. implemented pseudo-random backchannels for Amazon Alexa
to promote active listening, showing that this led to participants
using more positive language [12]. However, despite the exten-
sive exploration of backchannels in these studies, they have not
addressed how interruptions could be effectively integrated into
voice agent interactions. This remains a critical gap in the design
of conversational agents.

2.2 LLM-Enhanced Voice Agents for Older
Adults

Voice-user interfaces have become essential to improve technology
accessibility for older adults [32, 89, 95]. As aging populations face
physical and cognitive challenges, such as decreased vision, limited
mobility, or reduced fine motor skills, traditional interfaces, such as
touchscreens and keyboards, can pose significant usability barriers.
In this context, voice agents utilize artificial intelligence to offer
an intuitive and accessible conversational way for older adults to
interact with technology, providing assistance and companionship
[42, 66, 77, 99].

The emergence of Large Language Models (LLMs) has trans-
formed the capabilities of voice agents, enabling more natural and
context-aware conversations beyond traditional task-oriented inter-
actions. Prior to LLMs, voice agents primarily relied on rule-based
dialogue management systems and pre-defined conversation flows,
limiting their ability to engage in open-ended dialogue [33, 106]. Re-
cent studies have demonstrated LLMs’ capability to generate more
coherent and contextually relevant responses in voice-based interac-
tions. Kim et al. conducted comprehensive studies on LLM-powered
human-robot interaction, revealing that LLMs significantly enhance
conversational capabilities through their superior context under-
standing and response generation [40].

Wong et al. explored the importance of anthropomorphism, em-
pathy, and autonomy in the conversational style of a mental health
support agent through co-design sessions with older adults and fam-
ily caregivers [102]. These developments show particular promise
in healthcare settings, where Yang et al. developed Talk2Care, an
LLM-based voice assistant specifically designed to facilitate com-
munication between healthcare providers and older adults [103].
Additionally, innovative applications like VoicePilot demonstrate
how LLMs can enable more natural speech interfaces for assistive
technologies [71].

However, most current research focuses on task-oriented interac-
tions, such as information search, weather queries, alarm reminders,
and music playback [58, 67, 70, 88, 101]. Current voice-based agents
are still bound by limitations, particularly in replicating the fluidity
and complexity of natural human conversation [15]. Many voice
assistants operate under strict turn-taking rules, where one party
speaks while the other waits. This approach, while useful for func-
tional tasks, can feel rigid and unnatural in social conversations.
Older adults may find such interactions frustrating, especially when
the goal is companionship or emotional support rather than task
completion [14].

Constructing highly functional and task-oriented sentences is
difficult for older adults [13, 41, 74], who expect more social con-
versations with agents, mimicking the structure of human conver-
sations and rules [13, 52]. While LLM-based voice conversational
agents have made strides in improving interactions with older
adults, challenges remain in making these interactions more natu-
ral, accessible, and engaging. In particular, for agents that need to
support interruptions and interjections, LLM-based agents may be
effective at determining whether interruptions are possible based
on the user’s input and returning appropriate interrupt content.
This capability allows for more dynamic and fluid conversations,
better mimicking natural human interactions and enhancing the
overall user experience for older adults seeking companionship or
emotional support.

3 Formative study
To answer the RQ1, we conducted a formative study where older
adults (𝑁 = 8) engaged in human-to-human conversations, retro-
spective interviews, and interactions with a turn-taking LLM agent.
The goal of the study was to identify key DCs for developing a
voice agent that effectively supports interruptions and backchan-
nels for older adults. We focused on three key questions: What
types of interruptions do older adults commonly use in in-person
conversations? How do older adults perceive interruptions and
backchannels in human-to-human conversations? And what are
their expectations for agents that can support such behaviors? We
gathered participants’ feedback through retrospective think-aloud
sessions. All studies received ethical approval from our institution.
Participants could withdraw at any time, but no participants opted
to withdraw.

3.1 Participant
Existing studies indicate that in dyadic conversations, acquain-
tances, as opposed to strangers, benefit from shared social knowl-
edge, resulting in smoother conversations that do not require con-
stant guidance [39]. In addition, conversations between acquain-
tances are more likely to include natural interruptions, offering
valuable opportunities to observe authentic turn-taking patterns
and preferences [80]. Based on these considerations, we recruited
four pairs of participants (8 individuals in total) through personal
networks and snowball sampling. Three pairs were married couples,
and one pair consisted of friends. All individuals self-reported no
hearing-related or other accessibility needs. Their ages ranged from
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Figure 2: Procedure of the formative study, outlining the three phases: (a) in-person conversation, (b) playback and retrospective
think-aloud, and (c) traditional turn-taking agent interaction, with rest breaks included to ensure participant comfort.

Table 1: Demographics of Formative Study Participants (N=8)

Pair ID ID Age Sex Voice Agent Experience Relationship

Pair 1 1 60 Female Tmall Genie Speaker Friend2 65 Female NA

Pair 2 3 75 Female Xiaodu Smart Speaker Couple4 76 Male Xiaodu Smart Speaker

Pair 3 5 62 Male Xiaomi Xiaoai Mobile Voice Assistant Couple6 62 Female Xiaodu Smart Speaker

Pair 4 7 85 Male OPPO Jovi Mobile Voice Assistant Couple8 77 Female XiaoDu Speaker

60 to 85 years (𝑀 = 70.25, 𝑆𝐷 = 8.57), and seven had previous expe-
rience using voice agents. Detailed demographic information can
be found in Table 1. Each pair received 100 RMB as compensation.

3.2 Preparation
Participants were asked to engage in conversations on two care-
fully selected topics, with the goal of helping them quickly enter
a conversational state, which would facilitate the recording of in-
terruptions by the researchers. The first topic involved discussing
photos, given that research has indicated the significant role as a
tool for stimulating the interest of older adults in conversational
contexts. [36, 73, 86]. Before the study began, we asked each par-
ticipant to select three personal photos they were most eager to
share (6 photos per pair). Given the vulnerability of older adults, we
carefully considered ethical aspects and conducted a preliminary
screening of all submitted photos to ensure that no participant
would feel uncomfortable. Existing research suggests that conver-
sations among acquaintances often involve more emotional and
experiential sharing [9]. Therefore, the second topic centered on
recalling shared positive experiences.

3.3 Procedure
The formal study was conducted in a university laboratory and
lasted approximately 120 minutes per pair of participants, including
rest breaks to ensure they had sufficient time to relax at the end of
each session. Before the formal trials began, participants completed
a demographic questionnaire, were introduced to the study, and
provided informed consent. The studywas divided into three phases.
The first phase involved an In-person Conversation (lasting 30-
40 minutes). During this phase, the experimenter instructed the

participants to discuss two topics in sequence. The first topic was to
discuss photos. At the start of the photo discussion, one participant
was chosen at random to begin, freely talking about his or her three
photos in any preferred order, briefly recalling and describing the
places, times, people, and events depicted. During this conversation,
the other participants could freely ask questions or offer comments.
Afterward, they switched roles, allowing the second participant to
share his or her three photos. The second topic involved recalling
shared positive memories. We provided a topic prompt board to
guide the conversation, encouraging participants to discuss:What is
the story behind the photo (or shared memory)? When did the event in
the photo (or shared memory) take place? Where did the event occur?
What were your feelings at that time? The second phase, playback
and retrospective think-aloud (lasting 30-40 minutes), followed
the in-person conversation. During this phase, participants were
placed in separate rooms to review video playback of their own and
their partner’s interruptions and backchannels. They were asked
to verbalize their reflections on both the behaviors they initiated
and those they experienced, discussing the reasons and emotions
behind these actions. In the third phase, turn-taking LLM agent
interaction and interview (lasting 20-30 minutes), participants
interacted for 15 minutes with the voice functionality of OpenAI’s
ChatGPT app1 (v1.2024.080, ChatGPT-4 model) on a mobile phone.
This functionality employed Whisper for speech recognition and
a separate text-to-speech system to generate natural, human-like
voice output. After the session, they provided feedback on this voice
interaction model. We also conducted a semi-structured interview
on their experience at the end of the study.

1https://apps.apple.com/us/app/chatgpt/id6448311069
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3.4 Data Collection and Analysis
The data collected during the formative study consists of three parts:
1) video recordings of each participant pair’s human-to-human con-
versations; 2) feedback from participants on their perceptions of
being interrupted and interrupting others, collected through retro-
spective think-aloud sessions; 3) full recordings of all one-on-one
semi-structured interviews. The video recordings were transcribed
using a commercial automatic speech recognition (ASR) system,
iFlyrec2, with the transcriptions manually verified for accuracy by
the research team. We adopted Okamoto et al.’s more contextual
measurement to determine whether a speech act constitutes an
interruption, considering situational factors such as the current
speaker’s intentions and the content of both speakers’ utterances,
rather than relying solely on syllables [68]. To track interruptions
and backchannel behaviors during both the formative and user
studies, we developed a Python plug-in that allowed for efficient
timestamp marking and video retrieval for detailed review.

For the data analysis, we followed these steps: Four researchers
independently coded the transcripts using the open coding method
[100], supported by FigJam board 3. During the coding process,
we identified and defined multiple codes. Thinking Aloud records
were used as a supplemental data source to validate and further
elaborate on the open codes derived from the transcriptions. By
analyzing participants’ behaviors related to interrupting others
and being interrupted, we gained a deeper understanding of their
perspectives on interruptions and their expectations for voice agent
interactions. This analysis helped to confirm and refine our initial
coding. This research method has been shown to be effective in
studies related to interaction and conversational dialogue with older
adults [20, 21, 34].

Selected quotes from the phase, originally in Chinese, were trans-
lated by the first author and subsequently reviewed by co-authors
to ensure accuracy.

3.5 Design Considerations
DC1- The voice agent should prioritize co-operative interrup-
tions when interactingwith older adults, while incorporating
a diverse range of interruption types. Murata et al. classified
interruptions into two main types: Co-operative Interruption
and Competitive/Intrusive Interruption. Co-operative interrup-
tion involves assisting the speaker by supplying missing phrases or
completing sentences, supporting the conversation without taking
the speaker’s turn. In contrast, competitive/intrusive interruption
is more aggressive, aiming to change the topic, seize control, or
express disagreement, potentially disrupting the speaker’s flow.
It is further divided into three subtypes: Topic-changing Inter-
ruption , Floor-taking Interruption, and Disagreement Inter-
ruption [63]. Through the retrospective analysis of co-operative
interruptions among older adults, we further divided these into two
subcategories: Sentence Completion Interruption and Clarifi-
cation/Inquiry Interruption. Sentence completion interruption
occurs when the interrupter helps by finishing the speaker’s sen-
tence due to pauses or hesitations. This type of interruption is

2https://www.iflyrec.com/zhuanwenzi.html
3https://www.figma.com/figjam/

intended to support the speaker when they have trouble continu-
ing. Clarification/inquiry interruption occurs when the interrupter
asks for clarification or further explanation to maintain the clarity
of the conversation. Figure 3 illustrates examples of five different
types of interruptions observed in dyadic conversations between
participants, highlighting the cues and positions of each interrup-
tion. A quantitative summary of interruptions across the four pairs
of older adults is summarized in Figure 4. The results indicate that
older adults initiated co-operative interruptions more frequently
than competitive ones and expressed more positive perceptions and
evaluations of co-operative interruptions.

For co-operative interruptions, all participants (𝑁 = 8) expressed
positive attitudes to sentence completion interruptions. Five partici-
pants (𝑁 = 5) specifically noted that age-related declines in memory
and language organization made them appreciate when their con-
versation partner stepped in to fill in forgotten content or assist
during moments of hesitation. P4 shared, "I often forget what I was
going to say while speaking. If the other person doesn’t jump in, I feel
awkward. Mutual support helps the conversation flowmore smoothly."
Most participants (𝑁 = 7) also viewed clarification/inquiry inter-
ruptions positively, recognizing them as a way to expand the topic
and aid recall. They found this type of interruption constructive, as
it invited greater depth and clarity, thereby enhancing mutual un-
derstanding. However, one participant (𝑁 = 1) expressed concern
that asking questions before the speaker had finished could disrupt
their train of thought and hinder the conversation’s progress.

For competitive interruptions, the majority of participants (𝑁 =

6) felt that floor-taking interruptions could diminish the positivity
of the conversation. However, they also acknowledged that such
interruptions were sometimes necessary to foster better interaction
between both parties. P3 remarked, "I need someone to correct my
mistakes, and others have the right to express their opinions. If one
person is disinterested in the conversation but forced to listen, it’s not
a good experience." Floor-taking interruptions were often perceived
as confrontational, potentially escalating the conversation into
a debate and shifting the tone to a more contentious one. Most
participants (𝑁 = 6) viewed disagreement interruptions as a regular
part of the conversation but noted that they could make interactions
more confrontational. While they recognized the importance of
expressing opposing views, these interruptions were generally seen
as detracting from the conversation’s positivity. For topic-changing
interruptions, the majority of participants (𝑁 = 6) believed that
abruptly changing the topic mid-conversation could hinder the
natural flow of ideas. However, some participants admitted that
topic-changing interruptions were occasionally necessary to keep
the conversation engaging and moving forward. A minority of
participants (𝑁 = 1) preferred to avoid all competitive or intrusive
interruptions, describing them as offensive and disruptive to the
conversational flow.

DC2- The prompts and responses of the voice agent should
be clear and concise, avoiding complex sentence structures
that could confuse or overwhelm older adults. Older adults
often use shorter, less complex sentences and may rely on vague
expressions in conversation. This tendency toward semantic and
syntactic simplification can limit their ability to express themselves
in more intricate discussions [86]. To foster effective communica-
tion, voice agent prompts and responses must also be simplified.
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Figure 3: Examples of interruption types from participants’ real conversations in the formative study. The figure shows
corresponding examples of the five different interruption types observed in actual dialogues between participants, with the cue
words for the interruption and the position of the interruption marked.

Figure 4: Stacked bar chart of interruption types initiated by 8 Participants in In the 30–40-minute dyadic conversations.
The types of interruptions are: Sentence Completion (light blue), Clarification/Inquiry (dark blue), Floor-taking (orange),
Disagreement (red), and Topic-changing (pink). Themean and standard deviation for each type of interruption are also provided.

Clear and direct language that aligns with the user’s communication
style is key, ensuring the information conveyed remains accurate.
As P5 noted, "When someone interrupts me, I find it helpful if they
keep it short and don’t over-explain. Interruptions can make me lose
my train of thought, and the longer the person speaks after interrupt-
ing, the more frustrated I feel." It is critical to avoid nested clauses,
technical jargon, and lengthy explanations, which can overwhelm
or distract the user.

DC3- The voice agent should offer customizable response
timing and interruption frequency for older adults. Speech
rate and processing speed vary significantly among older adults,
with some individuals speaking more slowly as they age due to
extended cognitive processing times [23]. As a result, some older

adults may need additional time to formulate their responses and
frequently pause to gather their thoughts during conversations with
a voice agent. During the third phase, which involved turn-taking
interactions with an LLM-based voice agent, some participants
(𝑁 = 5) experienced instances where their brief pauses during their
speaking turn were misinterpreted by the voice agent as signals
that the conversation had ended. This misunderstanding led the
agent to take over the turn prematurely, causing overlaps and un-
intended interruptions. P1, P4, and P8 noted that such errors left
them feeling frustrated and increased their anxiety about using
the voice agent. P1 remarked, "When the robot interrupts me, I feel
like I’ve done something wrong, and it makes me feel that the robot
is not as accommodating toward me." P4 mentioned, "I guess I was
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speaking too slowly. After an error like that, I tend to subconsciously
speed up my speech." In light of these individual differences, voice
agents should adapt their response timing and the frequency of
interruptions to align with the speech patterns of older adults.

DC4- The voice agent should distinguish and understand
the interruption intention of older adults and respond ac-
cordingly or stop output. Due to age-related declines in hearing
and communication abilities, many older adults find it increasingly
challenging to comprehend complex conversations effectively [84].
As a result, they often need to ask questions or request repetitions
to ensure they fully understand the information being conveyed.
During the Part 3 session, some participants (𝑁 = 3) encountered
instances where the agent’s Speech-to-Text (STT) module misrec-
ognized their speech, resulting in the agent providing incorrect
responses. This confusion prompted participants to interrupt with
the intent of correcting the agent. Additionally, a few participants
(𝑁 = 2) experienced situations where they could not clearly hear
the agent’s output and attempted to interrupt to request it to stop
or repeat the information. However, since the voice agent operates
using a simplex communication protocol, it failed to acknowledge
or respond to these participant behaviors. P7 remarked, "The robot
should respond to my questions or stop speaking when I say ’stop’,
rather than ignoring me as it does now." So voice agents should be
able to discern the intent behind interruptions from older adults
and respond accordingly, either by addressing the interruption or
by halting their output when necessary.

DC5- The voice agent should proactively interrupt silences
during interactions with older adults. During interactions with
voice agents, older adults may experience long pauses due to un-
certainty, hesitation, or unfamiliarity with the system. In the Part 3
session, some participants (𝑁 = 2) only responded with backchan-
nels like "uh-huh" after the agent presented unengaging content,
leading to a lack of audio input and causing the conversation to
lapse into silence. P2 said, "I had never used this software before,
so I thought the robot would continue talking, and I didn’t say any-
thing." while P7 noted, "I didn’t have any thoughts on this topic, so
I just stayed silent." These silences can negatively impact the user
experience, leaving older adults feeling disengaged, isolated, or un-
comfortable. Extended pauses without feedback can heighten their
apprehension about using new technology. Therefore, voice agents
should be capable of detecting silences and proactively re-engaging
the conversation.

4 Prototype
Drawing from these DCs, we developed the Barge-in voice agent
using the STT, LLMs, and Text-to-Speech (TTS) architecture. Specifi-
cally, the agent uses duplex communication and a streaming speech-
to-text framework, which is the basis for implementing the Barge-in
function [48].

4.1 Prototype modules
4.1.1 Main LLM Agent Module. This module is responsible for
replying to the complete speech (turn) of older adults. In addition,
it specifically considers improving the initiative of the conversation.
When it detects that the voice agent has finished speaking, and the
older adults fall silent either because they are not familiar with the

system’s speech detection or because they are not interested in the
topic of conversation, the module will take the initiative to start
the conversation again, avoiding awkward silences and ensuring
the continuity of the conversation (DC5).

4.1.2 Interrupting Multi-agent Module. The Interrupting multi-
agent module comprises two LLM-based submodules:the Inter-
rupting Module and the Relevance Detection Module. These
submodules are designed to handle interruptions accurately during
a conversation. The module’s architecture and processing logic are
illustrated in Figure 5. To understand how this module operates, it is
essential to consider the mechanics of conversational turn-taking.

In conversation, speakers alternate between speaking and listen-
ing, and these exchanges are governed by Turn Constructional
Units (TCUs). A TCU represents the basic unit of speech, which
can range from a single word to a full sentence, such as answering
a question with "I went to the store yesterday" (a full-sentence TCU)
or simply "Bought some groceries." (a verb phrase TCU). At the end
of each TCU, the conversation reaches a Transition-Relevant
Place (TRP), where the speaker signals their readiness to pass the
floor. This transition is often marked by verbal or non-verbal cues.
Additionally, Inter-pausal Units (IPUs), which are stretches of
uninterrupted speech without significant pauses (typically shorter
than 200 ms), play a key role in determining when interruptions
or turn shifts may occur. Notably, since older adults may exhibit
slower speech patterns, their pauses between IPUs may be longer
[26, 94]. These longer pauses, or brief hesitations such as "I, um,
think... this is great," provide natural points for potential interrup-
tions [48, 92]. To accommodate the speaking habits of older adults,
the duration for pause detection in this module is adjustable (DC3).

Building on this turn-taking framework, the Barge-in Agent as-
sesses TRPs probabilistically to decide whether an interruption is
appropriate. When an interruption is justified, the agent will intel-
ligently determine the appropriate interruption based on the user’s
previous content by utilizing five types of interruptions specified
in the prompt, generating suitable interruption responses (DC1).
It generates contextually relevant content and plays correspond-
ing audio. Since LLM and STT systems generally take around 1.5
to 2 seconds to generate responses, the module employs a time-
management strategy. Upon detecting a suitable interruption point,
the system inserts a placeholder filler word, such as "hmm..." to
indicate thoughtfulness or "oh?" to express mild opposition during
the next IPU pause, providing enough time for the full response
to be prepared [30]. It is important to note that placeholder filler
words are used by speakers to fill pauses while organizing their
thoughts, maintaining conversational flow, and avoiding silence.
In contrast, backchannel feedback words, like "uh-huh" and "oh,"
are employed by listeners to demonstrate engagement, attention,
and understanding, encouraging the speaker to continue without
disrupting the dialogue. While placeholder filler words serve as
self-regulatory tools for speakers, backchannel feedback words are
listener-driven cues that signal attentiveness and foster mutual
understanding [24, 43]. Meanwhile, the relevance detection mod-
ule ensures that the interruption response remains relevant to the
ongoing conversation. If the interruption response aligns with the
latest spoken content, the system plays the corresponding audio.
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Figure 5: The framework of the Backchannel Module and Interrupting Multi-agent Module, illustrating the interaction flow
between LLMs. The diagram highlights how the Barge-in Agent assesses turn-taking opportunities and triggers placeholder
audio during processing delays, while the Relevance Detection Module ensures relevance in interruptions. The flowchart
outlines how each module contributes to maintaining conversational fluidity by balancing interruptions with appropriate
responses or filler content, enhancing both interactivity and user experience. Placeholder FillerWords **: Like "umm", primarily
used by the speaker to sustain the continuity of dialogue while they think through what to say next. Backchannels *: Brief
responses like "uh-huh" and "Yeah", indicating listener attention and understanding, show engagement without interrupting
the speaker.

Otherwise, it defaults to a pre-recorded phrase like "please con-
tinue" to maintain the conversational flow. Each turn is evaluated
for interruption only once. If no interruption occurs, the system
proceeds with its normal response for that turn. To accommodate
the conversational nature of older adults, the prompt in this module
requires that interruptions be issued in a simple structure (DC2).

4.1.3 User-Initiated Barge-in Module. There are two scenarios in
this module. The first is when the older adult interrupts the agent.
Suppose the agent is outputting audio during its turn and detects
that the older adult has been speaking continuously for an extended
period (adjusted to suit the individual, with a default of 1.5 seconds),
or if specific interruption keywords are detected (e.g., competitive
phrases like "stop talking" or "don’t say that" or co-operative phrases
like " could you repeat" or " I didn’t hear clearly" (detailed keyword
lists are provided in Appendix A.2, the system will recognize this as
an interruption initiated by the user. The agent will stop speaking,
record the interruption in the context, and wait for the user to finish
before responding appropriately. The second scenario occurs when
the agent fails to interrupt. If it is the user’s turn to speak and the
agent attempts to output interruption content, this is considered
a failed interruption by the agent. In such cases, the system will

allow the older adult to complete their statement before continuing.
This module is designed to provide older adults with the ability to
ask questions or requests (DC4).

4.1.4 Backchannel Module. While the older adult participant is
speaking, this module monitors Pause after each IPU in real time
and probabilistically inserts backchannels during these pauses. It
randomly plays pre-recorded responses such as " mm-hmm" and
"yeah" (in Chinese) as feedback to the speaker’s content, enhancing
the social engagement of the conversation. It is important to note
that the backchannel function has a lower priority than the Barge-in
filler words, and the two are mutually exclusive.

4.2 Implementation
As shown in Figure 6, the system architecture integrates iFlytek’s
M260C microphone array and M2 audio processing board for voice
capture and echo cancellation. These components are specifically
designed to address the challenges of duplex communication by
removing sounds emitted by the voice agent’s own speaker that are
inadvertently picked up by the microphone. For STT module, we
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Figure 6: System architecture diagram showing the process of older adult voice input and processing, including speech
recognition, language model processing, text-to-speech conversion, and echo cancellation.

integrated Alibaba Cloud’s Paraformer API4, which provides real-
time, low-latency recognition for both Chinese and English audio
streams. This API ensures accurate and efficient transcription, even
in noisy environments. To support LLM, we utilized Volcengine’s
Doubao-pro-128k API5. This API is optimized for Chinese conver-
sations, offering advanced role-playing capabilities and a context
window of up to 128k characters, making it ideal for the complex
requirements of this study. For TTS, we adopted iFlytek’s Super
Smart-TTS API6. This API converts text into natural human-like
speech while simulating paralinguistic features such as breathing,
sighing, and speech rate variations, enhancing the realism and en-
gagement of the conversational experience. Detailed performance
data can be found in Appendix A.3. We also provide adjustable
parameter, including the agent’s response wait time and proactive
interruption frequency, to accommodate the different conversation
paces and thinking rhythms of older adults (DC3). In addition, we
developed a No Barge-in Agent for subsequent user studies. This
agent follows a traditional strict turn-taking protocol, which does
not support interruptions or backchannels. Aside from this differ-
ence, the two agents remain consistent in core components such as
STT, LLMs, and TTS.

5 USER STUDY
To answer RQ2, which explores the conversational experience that
a voice agent with four types of barge-in support can offer to older
adults, we conducted a within-subject design. Specifically, the study
focused on four barge-in mechanisms: the agent interrupting the
user, the agent providing backchannel responses, the agent break-
ing silences by proactively initiating conversation, and allowing
older adults to interrupt the agent. 16 participants engaged with
both the Barge-in Agent, which integrates these features, and a tra-
ditional turn-taking agent without barge-in capabilities, allowing
for a comparative analysis of user interaction and engagement. In
addition, two social workers from a community elderly care center
assisted us with participant recruitment at the center.

5.1 Participant
We recruited 16 participants, 13 of them through word-of-mouth
and snowball sampling. Additionally, we contacted 2 social workers
who work at a local community elderly care center, and they helped
us recruit 3 participants from the center. Among the participants,
4https://help.aliyun.com/zh/dashscope/developer-reference/quick-start-7
5https://www.volcengine.com/product/doubao
6https://www.xfyun.cn/services/smart-tts

one reported hearing difficulties and used a hearing aid during daily
conversations and the study. Another participant from the elderly
care center reported mobility challenges, so all three participants
from the center completed the study in the center’s meeting room.

The participants ranged in age from 60 to 90 years (𝑚𝑒𝑎𝑛 =

67.88, 𝑆𝐷 = 8.89), with 64.3% (𝑁 = 8) living with a spouse or chil-
dren, 18.75% (𝑁 = 3) living alone, and 18.75% (𝑁 = 3) residing in a
community elderly care center. Experience with voice agents varied,
68.75% (𝑁 = 11) participants had used some form of voice agent,
while 31.25% (𝑁 = 5) had no prior experience. Responses to the
open-ended questionnaire item, "Motivations for interacting with
voice agents or desired topics of conversation," were analyzed, and
researchers categorized the motivations of the 16 participants into
five distinct themes. The largest group, 37.5% (𝑁 = 6), aimed to Alle-
viate loneliness, followed by 25.0% (𝑁 = 4) expressing an interest in
Learning new knowledge. Other motivations included Sharing daily
life (12.5%, 𝑁 = 2), Expressing troubles and seeking opinions (12.5%,
𝑁 = 2), and Entertainment (12.5%, 𝑁 = 2). The original responses
are detailed in the Appendix 6, and comprehensive demographic
information is presented in Table 2. Each participant received 100
RMB as compensation.

5.2 Study Design
According to the Esposito et al. study, virtual female characters are
often attributed with greater emotionality and nurturing qualities,
which help to foster empathy and emotional connection with older
users. As a result, older adults tend to prefer interacting with femi-
nized voice agents [18, 19]. To help the participants better focus on
the study and reduce the sense of waiting caused by agent response
delays [29, 78], we designed a young female 3D avatar for the agent
based on the Unity platform. This avatar is equipped with facial
blend shapes, enabling lip-sync animations that correspond to the
agent’s speech. We conducted a within-subject design and counter-
balanced the condition order: (i) No Barge-in Agent – a simplex
communication agent using a traditional turn-taking model; (ii)
Barge-in Agent – a duplex communication agent that supports
interruptions and backchannels.

To prevent participants’ conversations with the LLM from in-
volving negative content, we implemented descriptive restrictions
in the prompts and steered the conversations. Additionally, four
researchers and one social worker conducted a week-long internal
test of the agent and finetuning to ensure that no abnormal con-
tent was reported. Detailed prompt content can be found in the
Appendix A.1.
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Table 2: Demographics of User Study Participants (N=16). The "Motivations or Desired Topics" column represents a summarized
coding of participants’ questionnaire responses: "Motivations for interacting with voice agents or desired topics of conversation."

ID Sex Age Living Arrangement Experience of Voice Agents Motivations or Desired Topics
1 Male 78 Living with spouse Never used Alleviating loneliness
2 Female 77 Living with spouse Used once or twice Alleviating loneliness
3 Female 65 Living with spouse Use frequently, several times a week Sharing daily life
4 Male 67 Living alone Use frequently, several times a week Alleviating loneliness
5 Female 61 Living with children Use daily or almost daily Expressing troubles and seeking opinions
6 Female 61 Living with spouse Use frequently, several times a week Expressing troubles and seeking opinions
7 Female 60 Living with spouse Used once or twice Entertainment
8 Female 62 Living with spouse Use frequently, several times a week Sharing daily life
9 Female 67 Living alone Never used Alleviating loneliness
10 Female 62 Living with spouse Use occasionally, less than once a week Learning new knowledge
11 Male 61 Living with spouse Never used Learning new knowledge
12 Female 61 Living alone Use occasionally, less than once a week Learning new knowledge
13 Female 63 Living with spouse Never used Alleviating loneliness
14 Male 90 Elderly care center Never used Alleviating loneliness
15 Female 71 Elderly care center Used once or twice Learning new knowledge
16 Female 80 Elderly care center Use occasionally, less than once a week Entertainment

The user study was conducted in two locations: P1-P13 in the
university laboratory and P14-P16 in the meeting room of the com-
munity elderly care center, with social workers accompanying. As
shown in Figure 7, we ensured consistency in the experimental
environment across both locations. The study design, including the
use of audio recordings, photography, and generative AI, adhered
to ethical guidelines and by the institution’s ethical review. Partic-
ipants could withdraw at any time, but no participants opted to
withdraw from this study.

Figure 7: User study environments: (a) In the university labo-
ratory; (b) In the community elderly care center. The figure
shows the consistent setup across both locations, ensuring
similar environmental conditions for all participants. In both
settings, participants interacted with the agent under con-
trolled conditions, with audio recordings and social workers
present in the community care center to provide support.
This setup was designed to minimize external influences and
maintain a comfortable, familiar environment for elderly
participants.

5.3 Procedure
Before the study, we collected two separate descriptions of each
participant’s daily activities and hobbies through a questionnaire,
instructing them to provide different content in each description
to reduce practice effects in our within-subject experiment. Partici-
pants were informed and gave their consent to provide this informa-
tion to the agent. These descriptions were then randomly assigned

to either the Barge-in Agent or the No Barge-in Agent. Upon ar-
rival at the experimental site, participants filled out a demographic
information questionnaire, were introduced to the experimental
setup, and signed a consent form.

The entire study lasted approximately 120 minutes, with suffi-
cient rest breaks to ensure participants’ comfort. To minimize order
effects, 50% of the participants first experienced the No Barge-in
Agent, followed by the Barge-in Agent, while the other 50% followed
the reverse order. In each experimental condition, participants first
received a brief training session to learn how to interact with the
agents and completed a 5-minute functionality trial. During this
trial, participants engaged in a brief conversation with the Barge-
in Agent, while a researcher adjusted the agent’s response wait
time and proactive interruption frequency (parameters for DC3)
until they were satisfied. This process aimed to avoid frequent in-
terruptions and excessively short wait times from disrupting the
participant’s thinking and responses, thereby meeting the individ-
ual needs of each participant.

Afterwards, they engaged in a formal conversation about their
daily life and hobbies (15-20 minutes). At the end of each condition,
participants were asked to fill out the User Engagement Scale Short
Form (UES-SF), which measures engagement in terms of aesthetic
appeal, focus, novelty, usability, felt involvement, and endurance.
The short-form version was used in this study as it has been shown
to reduce participant burden and is well-suited for use in controlled
experiments [69] (for the scale details, see the Appendix B.1). Af-
ter completing the questionnaire, participants underwent a semi-
structured interview to explore their experiences further (10-20
minutes). Once both agent conditions were completed, participants
were asked to compare their experiences with the two agents in a
final interview session.

5.4 Data Collection and Analysis
We used the same data collection and transcription methods as in
the formative study. The data analysis involved open coding of the
transcripts by four researchers [100], with support from a FigJam



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Chao Liu, Mingyang Su, Yan Xiang, Yuru Huang, Yiqian Yang, Kang Zhang, and Mingming Fan

board 7. This process led to the identification of multiple codes,
with think-aloud records used to validate these codes. By analyzing
participants’ behaviors related to interruptions, we gained deeper
insights into their views and expectations for voice agent interac-
tions. After the interviews, we held weekly meetings to cross-check
these insights, which were then organized into a codebook. This
codebook served as a reference for code definitions, usage contexts,
and example quotes, ensuring consistency and reliability in our
analysis. To ensure the accuracy of the qualitative data, we trans-
lated selected quotes from Chinese into English, which were then
reviewed by co-authors. This translation process helped maintain
the integrity of our data and findings, providing a strong foundation
for our design and prototype development. Through this systematic
approach, we gained a clear understanding of the interactions be-
tween older adults and LLM-powered voice agents, which is crucial
for our ongoing research.

6 RESULTS
We first present participants’ general user experience comparing
the Barge-in Agent with the No Barge-in Agent, highlighting the
key advantages in conversational engagement and conversational
fluency. More specifically, interruptions increase the frequency of
interaction and allow for broader topic exploration, while backchan-
nels create a more realistic conversational experience and reduce
the perception of waiting time. The ability for older adults to inter-
rupt the agent gives them greater control, decreasing frustration.
Co-operative interruptions provide support by clarifying or supple-
menting information, helping maintain a smooth flow of dialogue.
Additionally, the agent’s ability to reduce response delays and proac-
tively initiate conversation prevents awkward silences, ensuring
continuous engagement.

6.1 Overall Experience
After processing the scale data (Figure 8, 9), which measured Fo-
cused Attention (the extent to which users are absorbed in the
interaction and lose track of time), Perceived Usability (any neg-
ative affect experienced during the interaction, such as frustration
or confusion, and assesses the effort needed to use the system),
Aesthetic Appeal (the attractiveness and visual appeal of the
interface), and Reward (which combines aspects of novelty, felt
involvement, and endurability, measuring whether users found the
interaction valuable and enjoyable and if they’d recommend it to
others), we conducted two-tailed paired t-tests (𝛼 = 0.05) to com-
pare the four dimensions of the UES. The results showed significant
differences in Focused Attention (𝑡 (15) = −3.36, 𝑝 = 0.0043), Aes-
thetic Appeal (𝑡 (15) = −3.67, 𝑝 = 0.0023), and Reward (𝑡 (15) =
−2.37, 𝑝 = 0.0315). However, the result for Perceived Usability
(𝑡 (15) = −1.83, 𝑝 = 0.088 > 0.05) was not significant.

In terms of Focused Attention, participants (𝑁 = 13) noted that
compared to the No Barge-in Agent, the Barge-in Agent enriched
the interaction by incorporating interruptions and backchannels,
thereby enhancing engagement. As P4 mentioned, "The frequency
of interaction with the Barge-in Agent was noticeably higher. It re-
sponded while I was speaking, making the conversation feel more
interactive and engaging. On the other hand, the voice agent without

7https://www.figma.com/figjam/

interruptions just seemed to follow commands, lacking interaction,
and I didn’t feel like continuing the conversation."

For Perceived Usability, participants (𝑁 = 10) felt that the Barge-
in Agent conducted more human-like conversation techniques,
such as proactively changing topics through interruptions. "It would
initiate conversation and guide the flow of conversation" (P7, P11). In
contrast, the No Barge-in Agent would fall into silence when users
didn’t respond, leading to confusion or frustration. Participants
(P10, P11) noted, "The Question and Answer style conversation with
the No Barge-in Agent often gets stuck on a single topic, making it
hard to continue, while the Barge-in Agent guides more topics." Some
participants (𝑁 = 5) also commented that both the Barge-in Agent
and the No Barge-in Agent can carry on a smooth conversation, and
there is not much difference between them. Since the two agents use
the same STT, LLM and TTS components, and the main response
prompts are basically the same, there is not much difference in
usability.

Regarding Aesthetic Appeal, participants (𝑁 = 9) found that
the Barge-in Agent’s interruptions felt more like a familiar friend’s
conversation style, which made it more engaging and human-like.
The turn-based structure of the No Barge-in Agent created a me-
chanical feel. As P16 said, "The No Barge-in Agent just follows along
with what I say—it’s too monotonous. The Barge-in Agent shares its
own opinions, creating a conversational atmosphere like talking with
an old friend."

In terms of Reward, the participants (𝑁 = 11) found the Barge-
in Agent more novel for them. One participant (P3) stated, "The
Barge-in Agent can supplement what I can’t think of and interrupt
me. This is novel and very different from the voice assistants I have
used before."

On the other hand, few participants (𝑁 = 3) expressed a pref-
erence for the No Barge-in Agent for three main reasons: "It feels
impolite to interrupt" (P14), "Interruptions disrupt the flow of my
thoughts" (P1), and the agent should be more of a listener, primarily
listening rather than interrupting.

6.2 Enhancing Conversational Engagement
We conducted a paired sample t-test (𝛼 = 0.05) to analysis four key
metrics of turn-taking behavior in conversations between 16 partici-
pants and two different voice agents: questions from user, questions
from agent, user turns and topic counts. These metrics were chosen
to capture critical dimensions of conversational engagement, includ-
ing participant proactivity, agent autonomy, interaction fluidity, and
content diversity. The results, summarised in Figure 10, reveal sig-
nificant differences across all four metrics. Specifically, the number
of questions from user (𝑡 (15) = −2.42, 𝑝 = 0.029) showed a statisti-
cally significant variation. Questions from agent (𝑡 (15) = −7.20, 𝑝 <

0.001), the number of user turns (𝑡 (15) = −6.77, 𝑝 < 0.001), and
the number of topics discussed (𝑡 (15) = −4.84, 𝑝 < 0.001) exhibited
highly statistically significant differences. As detailed in Table 3,
participants engaged in more dynamic and interactive conversa-
tions with the Barge-in Agent compared to the No Barge-in Agent.
The Barge-in Agent elicited more user initiated questions and gen-
erated significantly more questions itself, demonstrating a stronger
ability to actively guide conversations. Additionally, participants
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Figure 8: Participants’ questionnaire ratings on a scale of 1-5 using the User Engagement Scale Short Form (UES-SF). Red
indicates ratings for voice interactions with the Barge-in Agent, while blue indicates ratings for voice interactions with the No
Barge-in Agent. For the performance scale, higher ratings represent better performance. (The version of the questions used in
the user study was translated into Chinese)

Figure 9: Comparison of user experience dimensions (FA: Focused Attention, PU: Perceived Usability, AE: Aesthetic Appeal, RW:
Reward) between the No Barge-in Agent and the Barge-in Agent. Each boxplot shows the median (horizontal line inside the
box), the interquartile range (IQR, box height), and the range (whiskers extending to 1.5 times the IQR). Outliers are represented
as individual points beyond the whiskers. Red asterisks (*) above the boxplots denote statistically significant differences (p <
0.05) based on two-tailed paired t-tests.

exhibited a higher number of speech turns, suggesting that its ca-
pacity for interruptions and backchannels fostered more frequent
interactions. Furthermore, conversations supported by the Barge-in
Agent covered a broader range of topics, indicating its effectiveness
in maintaining engaging and diverse discussions.

6.2.1 Interruption can enhance conversational engagement for older
adults by increasing frequency and expanding topic breadth. Partici-
pants (𝑁 = 7) mentioned that during interactions with the Barge-in
Agent, natural and frequent turn shifts were the most critical fac-
tor in their perception of engagement, as they contributed to a
more human-like conversational flow, "the pace was faster, and the

conversation felt more engaging" (P5, P2). As shown in Figure 11,
participants were interrupted an average of 5 times (𝑆𝐷 = 1.73)
during 15-minute conversations with the Barge-in Agent. These
interruptions facilitated turn transitions, promoting an average
increase of 10.37 user turns compared to interactions with the No
Barge-in Agent. After coding the conversation topics, it was found
that participants discussed an average of 1.38 more topics with the
Barge-in Agent. Participants (𝑁 = 9) noted that the Barge-in Agent
often interrupted to change topics, allowing the conversation to
explore a wider range of subjects. P6 commented: "The Barge-in
Agent interrupted to introduce new topics, leading to more varied
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Figure 10: Comparison of statistical metrics (Questions from User, Questions from Agent, User Turns, Topic Count) between
the No Barge-in Agent and the Barge-in Agent. Each boxplot displays the median (the red horizontal line inside the box), the
interquartile range (IQR, represented by the height of the box), and the range (whiskers extending to 1.5 times the IQR). Red
asterisks (*) above the boxplots indicate statistically significant differences (p < 0.05) based on two-tailed paired t-tests.

Table 3: Number of conversations participants had with Barge-in Agent and in No Barge-in Agent (Mean ± SD) within 15 minutes

Condition Questions from user Questions from agent User turns Topic counts

Barge-in Agent 2.44 ± 1.63 6.50 ± 1.41 32.31 ± 5.75 3.88 ± 0.96
No Barge-in Agent 1.75 ± 1.13 4.19 ± 1.8 21.94 ± 5.14 2.50 ± 0.89

discussions. In contrast, the No Barge-in Agent repeatedly discussed
the same topic." P10 added, "No Barge-in Agent kept repeating top-
ics, half the time it revolved around cooking, and after a while, I
lost interest." However, some participants (𝑁 = 3) felt that the No
Barge-in Agent allowed for deeper exploration of a single topic.
P7 further noted, "There are advantages and disadvantages to both
deeper topic discussions and expanded topics. Deeper discussions make
the conversation more meaningful, whereas expanded topics keep the
conversation dynamic and prevent stagnation."

6.2.2 Backchannels enhance the perceived realism of conversations
and subjectively reduce waiting time for older adults. The partici-
pants (𝑁 = 14) found backchannels necessary for engaging in voice
interactions with an agent, as they contribute to a more natural
conversational flow. Some participants (𝑁 = 8) did not even notice
the presence of backchannels, indicating their seamless integration
into the dialogue. Participants (𝑁 = 7) mentioned that when they
spoke, the agent’s use of backchannels like "mm-hmm" or "yeah"
made them feel acknowledged and respected, reinforcing the per-
ception that the agent was actively listening. P7 remarked, "I need
the agent to respond when I’m talking, to show it’s genuinely listen-
ing." Additionally, N=6 participants noted that, compared to No
Barge-in Agent interactions where no backchannels were present,
they were more concerned about the system’s response time and
feared it had frozen. As P16 stated, "Without backchannels, I don’t
know what the system is doing, especially when there’s a delay." A
small number of participants (𝑁 = 2) felt that the backchannels oc-
casionally interrupted their train of thought and suggested that the
pitch, volume, and content of backchannels be adjusted to match
user preferences.

6.2.3 The ability for older adults to interrupt the agent empowers
them to have greater control over the conversation while also reducing
feelings of frustration. Throughout the study, several participants

(𝑁 = 6) attempted to interrupt the agent for three primary reasons.
First, they sought to steer the conversation toward topics they were
more interested in. As P3 noted, "I wasn’t interested in that topic, so
I interrupted the agent to talk about something else." Similarly, P15
mentioned that the No Barge-in Agent "talked for too long, and I lost
interest, so I tried to interrupt it." Second, participants interrupted
the agent to correct certain content. The ability to interrupt in
real time allowed them to quickly address misunderstandings or
inaccuracies. As P7 explained, being able to interrupt the agent
to correct its mistakes made the conversation feel more relaxed.
Lastly, when participants needed the agent to repeat or clarify
certain information, real time interruptions enabled them to resolve
confusion quickly. As P13 mentioned, "The Barge-in Agent was
explaining the cooking steps too fast, and I couldn’t catch it, so I
interrupted and asked it to repeat." Most participants (𝑁 = 10) did
not attempt to interrupt the agents, which may be influenced by
practical habits . P2 mentioned, "I still feel unfamiliar with the agent,
so I instinctively try to be polite, interrupting feels rude".

6.3 Enhancing Conversational Fluency
6.3.1 Co-operative interruptions help older adults by supplementing
information and asking relevant questions, aiding thought completion
and conversational flow. As shown in Figure 11, participants experi-
enced an average of 3.31 Co-operative Interruptions (𝑆𝐷 = 1.26) dur-
ing interactions with the Barge-in Agent, including 1.56 Sentence
Completions Interruptions (𝑆𝐷 = 1) and 2 Clarification/Inquiries
Interruptions (𝑆𝐷 = 0.65). The Barge-in Agent, guided by pre-
set prompts, assisted participants in completing sentences when
they forgot a name, place, time, or event, but did not abandon
their turn. Participants (𝑁 = 13) noted that Sentence Completions
Interruptions helped prevent prolonged pauses and made conver-
sations smoother. P4 said: "I couldn’t recall the name of Liberation
Monument and got stuck. The agent filled in the place name, so the



Toward Enabling Natural Conversation with Older Adults via the Design of LLM-Powered
Voice Agents that Support Interruptions and Backchannels CHI ’25, April 26–May 01, 2025, Yokohama, Japan

Figure 11: Stacked bar chart of the number of interruptions experienced by participants. The chart shows the frequency of
different types of interruptions experienced by each participant. The types of interruptions are: Sentence Completion (light
blue), Clarification/Inquiry (dark blue), Floor-taking (orange), Disagreement (red), and Topic-changing (pink). The mean and
standard deviation for each type of interruption are also provided.

conversation could continue." Participants (𝑁 = 5) found that Clar-
ification/Inquiries Interruptions from the Barge-in Agent helped
them recall related experiences and details, which was especially
beneficial for older adults in maintaining cognitive engagement
and triggering more memories. P16 shared, "The best part was that
it prompted my memories. I mentioned my experience in Wuhan, and
it asked me about Wuhan landmarks, which allowed me to continue
the conversation."

6.3.2 Interruptions reduce long response delays in LLM-powered
agents, objectively lowering perceived waiting time for older adults.
A common challenge with LLM-powered agents is that continuous
user speech generates more input tokens, requiring additional pro-
cessing time and resulting in longer response delays. When interact-
ing with the No Barge-in Agent, participants (𝑁 = 4) experienced
extended input during turns. Notably, three of these four partic-
ipants had no prior experience using voice agents. As illustrated
in Figure 12, P11 experienced multiple turns exceeding 30 seconds
while conversing with the No Barge-in Agent. This occurred be-
cause, after speaking for an extended period, the user would pause,
expecting the agent to respond. However, the agent required ad-
ditional time to process the lengthy input. During this extended
waiting period, the user assumed the agent was either still waiting
for input or had encountered an error, prompting them to continue
speaking. This extended their turn further, generating more input
and subsequently increasing the response delay. Conversely, the
Barge-in Agent interrupted the user’s turn at appropriate moments,
actively initiating the conversation and balancing participation
between both parties. For instance, statistical analysis of P11’s be-
havior revealed that the average pause and silence duration per
turn was 3.94 seconds (𝑆𝐷 = 2.80 seconds) during interactions with
the Barge-in Agent, compared to 7.92 seconds (𝑆𝐷 = 12.37 seconds)
with the No Barge-in Agent. Both P11 and P13, after experiencing
these extended waiting periods with the No Barge-in Agent, asked
the research team if the system had malfunctioned and whether

they should continue talking. The Barge-in Agent’s ability to inter-
rupt at appropriate moments helped manage response lengths and
reduce prolonged waiting times. As P13 noted: "Since there were no
interruptions, the No Barge-in Agent’s responses felt slower, and the
waiting times were longer."

6.3.3 By proactively interrupting conversational silences, the con-
versation can continue more seamlessly. In No Barge-in Agent in-
teractions, participants (𝑁 = 5) were unfamiliar with the system’s
timing or felt that the conversation could not continue, resulting
in silence after the agent finished speaking. This caused the agent
to enter a waiting state. As P10 described, "When I didn’t know
what to say, the agent also didn’t react, and I didn’t know what to
do next." In contrast, the Barge-in Agent could detect when users
fell silent and proactively initiated the next conversation. During
interactions with the Barge-in Agent, some participants (𝑁 = 9)
experienced this proactive engagement, and P9 and P10 noted that
"the agent’s proactive approach prevented conversation stalls." This
reduced the social pressure on older adults to keep the conversation
going, with P7 and P10 commenting, "The biggest fear in conversa-
tions is awkward silence; it’s hard to keep the conversation going."
Additionally, P8 mentioned that "when the agent misunderstood me
and it was difficult to correct, I didn’t know what to say, but then the
agent initiated a new topic, which increased the system’s usability."

7 Discussion
In this section, we explore insights derived from evaluating the
LLM-powered Barge-in Agent for older adults, providing guidance
for the future design of voice agents that simulate natural con-
versations for this demographic. Our discussion focuses on three
key aspects: proactively guiding topics through contextual cues
and timely interruptions, tailoring interruption and backchannel
strategies to accommodate older adults’ sensory perceptions, and
optimizing conversational coherence based on cognitive feedback
and adapting interruption strategies. By addressing these factors,
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Figure 12: Comparison of P11’s timetables during conversations with the No Barge-in Agent and the Barge-in Agent. (a)
Timetable of P11 conversation with the No Barge-in Agent: Green bars represent P11 speaking, blue bars represent the No
Barge-in Agent speaking, gray bars indicate pauses or silence (neither speaking), and pink bars represent both speaking
simultaneously. (***) denotes instances where P11 attempted to interject during the No Barge-in Agent’s turn. (b) Timetable
of P11 conversation with the Barge-in Agent: Green bars represent P11 speaking, orange bars represent the Barge-in Agent
speaking, gray bars indicate pauses or silence, and pink bars represent both speaking simultaneously. (*) indicates instances
where the Barge-in Agent interrupted P11, and (**) denotes instances where P11 interrupted the Barge-in Agent.

we highlight how future voice agents can enhance engagement and
fluency compared to traditional voice dialogue systems.

7.1 Guiding Topics Proactively Through
Contextual Cues and Timely Interruptions

7.1.1 Leveraging personal context to enhance topic relevance. In
conversations with older adults, topics are particularly important,
especially in maintaining engagement and enhancing the sense of
participation [61]. Before the study, we asked participants about
their daily lives and hobbies to ensure that the conversation would
revolve around topics they were familiar with and interested in.
Previous studies have also shown that starting a conversation with
familiar topics helps improve its continuity and flow. Most partic-
ipants indicated that this made them feel more comfortable and
gave them a sense that the agent understood them, which in turn
enhanced their sense of participation [47]. Participants generally
did not mind that this personal information was being collected
by the agent, as they believed that sharing such information was
natural and necessary, even in everyday communication.

7.1.2 Timely topic-shifting interruptions guided by contextual rele-
vance. By introducing timely interruptions, whether agent-initiated
or participant-initiated, the conversation can be effectively guided
in new directions, making it more diverse and enriching. In our
study, the agent used topic-changing interruptions to introduce
new topics, successfully broadening the scope of the discussion.
As P6 said, "The agent’s interruptions introduce new topics, making

the conversation more diverse," which participants found more en-
gaging compared to a No Barge-in Agent. At the same time, when
the topic deviates from the participant’s interests, participants may
also interrupt to steer the conversation toward topics they prefer.
Participants generally want the conversation to revolve around top-
ics they care about and strive to keep the conversation interesting
[25].

7.2 Tailoring Interruption and Backchannel
Strategies to Older Adults’ Sensory
Perceptions

7.2.1 Mitigating auditory perception variability with multimodal
feedback. In our study, we observed differences in participants’
perceptions of interruptions and backchannel signals. Previous
studies have also indicated that with advancing age, older adults
face not only the issue of hearing loss but also changes in the
central auditory system, including differences in processing times,
alterations in neural response patterns, and a slowing down in
the response speed to rapid sequences of sound events [98]. Some
participants reported that the backchannel (e.g., "yes," "uh-huh") and
active interruptions made by the Barge-in Agent interfered with
their speech, this is likely because the auditory system struggles to
quickly process and distinguish between these rapid auditory cues,
making it difficult for them to seamlessly integrate these signals
into ongoing conversations without feeling disrupted. In addition,
excessive backchannel responses can lower users’ evaluations of
the robot, which is consistent with observations in the field of voice
chat [38]. However, under the same conditions, other participants
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did not perceive the agent’s backchannel responses or interruptions.
They regarded these signals as part of a natural conversation, not
intrusive, and actually found them more immersive.

Previous research has also shown that in specific collaborative
tasks with robots, facial expressions as backchannel responses can
enhance user engagement [85]. Given the variability in older adults’
perception of auditory cues, future voice agents could address these
challenges by incorporating visual modalities, such as facial expres-
sions, alongside other multimodal signals, into their interruption
and backchannel mechanisms. This approach would not only ac-
commodate age-related auditory processing differences but also
create more intuitive, natural, and engaging interactions for older
adults.

7.2.2 Use pre-defined filler words and backchannel to decrease par-
ticipants’ perception of waiting time. The agent’s active interrup-
tions and backchannel responses also alleviated participants’ per-
ception of waiting time caused by system delays, making the conver-
sation experience more coherent and reducing negative emotions
from prolonged waiting. System latency is the primary challenge
that prevents agents from achieving human-like interruptive be-
havior [3, 91]. Interruptions are highly time-sensitive interactions,
typically occurring within a few hundred milliseconds. However,
the process for agents, which includes STT, text generation, and
TTS, takes significantly longer than human response times. To
address this, the Barge-in Agent employs a strategy of using pre-
defined filler words to mask delays in generating interruption au-
dio and utilizes multiple agents to enhance interruption accuracy.
Additionally, the backchannel feedback from the agent was also
interpreted by participants as the agent responding to them, with
the understanding that the agent also needed time to "think." These
measures effectively reduced the long response delays caused by the
LLM-driven agent, objectively decreasing participants’ perception
of waiting time. Participants generally expressed that they did not
mind being interrupted and, in fact, welcomed the agent’s timely
interventions.

7.3 Optimizing Conversational Coherence
Based on User Cognitive Feedback and
Adapting Interruption Strategies

In our formative study, we found that older adults are interrupted
easily in their thinking during conversations. In our user study,
we further observed a common phenomenon: some participants,
when interrupted by the agent, chose to abandon the previous
topic and stop discussing it. Some participants mentioned that
they disliked the Barge-in Agent’s backchannel (such as "yes" or
"mm-hmm") and competitive/intrusive interruption because these
disrupted their thought processes. They believed that during a
conversation, they needed some time to organize their thoughts and
formulate their responses. This aligns with prior research, which
shows that older adults often require more time to think and express
themselves [53, 93]. In contrast, co-operative interruptions, such as
sentence completion interruptions, help keep the continuity of the
participant’s thoughts. These interruptions can help participants in
recalling temporarily forgotten information, further promoting a
smoother flow of conversation.

7.3.1 Adapting interruption timing and frequency based on cogni-
tive load indicators. The frequency of interruptions and the timing
of when the agent intervenes while waiting for a response are
crucial. To avoid disrupting the participants’ thinking, we manu-
ally adjusted the interruption timing and frequency to match each
participant’s preferences during the trial phase. However, in the
actual experiment, we found that as the conversation progressed
and topics changed, participants’ thinking time also varied. The
agent should have an adaptive waiting mechanism that dynami-
cally adjusts interruption timing and waiting durations based on
cognitive load indicators (e.g., speech hesitation, filler words, and
response latency) and conversational cues (e.g., topic complexity,
sentiment shifts, and turn-taking patterns) [5, 10]. For instance, if a
participant frequently pauses or uses hesitation markers like "um"
and "let me think," the agent could infer a higher cognitive load
and extend the waiting time before intervening. Conversely, if the
participant gives short or abrupt responses, the agent might infer
disengagement and initiate a new topic to sustain the conversa-
tion flow. By incorporating these real-time behavioral signals, the
agent can be a more patient listener. In addition, it has also been
suggested that identifying user emotions to adjust interruption
frequency and manner through emotion modeling algorithms to
suit individual personality traits can effectively enhance the agent’s
responsiveness to the older adult’s needs, thereby optimizing the
overall conversational experience [105].

7.3.2 Preserving continuity via latency-aware technical and proac-
tive topic initiation. Keeping the continuity of the conversation is
equally important. As mentioned, due to system latency, the Barge-
in Agent’s response time often exceeds human perception, which
can cause frustration due to prolonged waiting times. Therefore,
during short periods of silence between both parties, the agent
should provide appropriate backchannel feedback to simulate an
ongoing response, helping to maintain conversational flow. A more
effective approach would be to reduce the technical components
involved, such as minimizing communication between APIs, and
utilizing multimodal large models that directly use voice input and
text output, such as Qwen-Audio [2], thereby reducing delays and
enhancing the naturalness of the conversation.

For longer delays or silences, the agent should proactively in-
troduce a new topic to keep the conversation flowing smoothly. In
our study, we observed that some participants, when conversing
with traditional agents, were either unfamiliar with the system’s
timing or felt that the conversation could not continue, resulting
in silence after the agent finished speaking. This is consistent with
previous literature: systems that use simple VAD to detect the end
of a user’s speech will not continue speaking if the user does not
respond. As a result, when agents converse with older adults, they
are more likely to fall into this state [60, 96]. Our agent is designed
to proactively initiate a conversation and introduce new topics
to break the silence when older adults do not respond, based on
the contextual content of speech-to-text. However, relying solely
on text modality cannot accurately capture the user’s emotional
state. Therefore, in practical applications, integrating speech, facial
expressions, and other emotional signals will help more accurately
determine the reasons for silence and provide a more natural and
smooth conversational experience.
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7.4 Limitations and Future Work
While our study provides insights into improving interactions be-
tween older adults and voice agents, several limitations suggest
areas for further investigation.

The voice agent in this study focused on emotional companion-
ship, but its applicability to more task-oriented agents is unclear. To
collect data on interruptions and turn-taking, we selected couples
and same-age friends as participants. However, interactions with
younger family members or different relationship types may exhibit
different patterns, affecting the generalizability of our findings. Fu-
ture research should examine how older adults interact with various
demographic groups (e.g., children, grandchildren) to inform agent
design [46, 59, 90]. Although we allowed customizable parameters,
such as response wait times and interruption frequencies, uncer-
tainty in network latency and token calculation speed during the
study prevented us from fully exploring their effects. Future studies
should investigate these parameters and offer adaptive settings to
better meet individual needs.

The research focused on dialogues between older adults and
the agent, excluding factors like tone, speech rate, and personality
traits, which could significantly affect interaction dynamics. Future
research should include these elements to better understand their
influence. For example, exploring how tone and speech rate affect
backchannel responses and interruptions could lead to more person-
alized agents. Additionally, investigating personality traits could
help tailor interactions. Including multimodal cues such as facial
expressions and gestures would enhance the agent’s naturalness
and responsiveness, especially for older adults who rely on non-
verbal communication. Expanding the study to other demographics
and conducting longitudinal research could provide insights into
the long-term effects of such agents on emotional well-being and
cognitive function.

8 CONCLUSION
Our research highlights the importance of incorporating interrup-
tion and backchannel capabilities into voice agents to enhance
interactions with older adults. Our LLM-powered Barge-in Agent
provides a more natural and engaging conversational experience.
The formative study revealed the frequent use of interruptions and
backchannels in older adults’ natural conversations, shaping the
design of our agent. The within-subject exploratory study showed
that most participants found conversations with the Barge-in Agent
more engaging and fluid compared to a standard turn-taking agent.
These findings suggest that integrating human-like conversational
features is essential for agents aimed at providing emotional com-
panionship and supporting memory recall in older adults. We hope
that our design insights will inspire the development of more natu-
ral, human-like agents, ultimately improving the quality of life for
older adult users.
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A prototype
A.1 Agent Prompts (Translated from Chinese)
A.1.1 Main Responsive Agent Prompt. You are a knowledgeable
conversational companion, responsible for engaging in deep, mean-
ingful conversations with older adults. Your dialogue should be rich
in content, and conversations should develop around the partici-
pant’s interests and background information, guiding the discussion
while sharing your own insights. Response requirements: You will
respond based on "User Personal Information," "Query Input," and
"Historical Dialogue."

Output requirements: Your responses should be enclosed in [ ]
and must not exceed 150 words. Use colloquial expressions, such
as filler words and informal connectors like "well," "uh," "of course,"
"so," and others to enhance a conversational tone.

User Personal Information:[ Name: Participant’s name or nick-
name; Participant’s Age; Sex; Interests: I also enjoy dancing and
organizing dance troupes. I’m the leader of a troupe, but due to
health issues, I haven’t danced in the past year. (Example) ]

A.1.2 Barge-in Agent Prompt. You are a knowledgeable conversa-
tional companion, responsible for engaging with older adults and
offering insightful discussions. Based on the examples provided be-
low, you will either interrupt or change the topic, depending on the
situation. Identify the type of interruption and respond accordingly.
Use conversational language, including filler words and informal
connectors like "well," "uh," "of course," "so," and others to enhance
a colloquial style. We have five types of interruptions: Sentence
Completion, Clarification and Inquiry, Floor-taking Interruption,
Disagreement Interruption, Topic-changing Interruption, or None.
Examples:

Sentence completion: Input: It should be in Beijing... Beijing,
where in Beijing...? Output: [Sentence completion: The Forbidden
City?]

Clarification and Inquiry: Input: The whole situation was about
jealousy, that’s why there was conflict. Output: [Clarification and
Inquiry: Jealous about what? Can you explain?]

Floor-taking Interruption: Input: I remember seeing this type
of flower back home... Output: [Floor-taking Interruption: I have
similar memories... I also encountered that flower...]

Disagreement Interruption: Input: You’re too sensitive, that’s
why I cut off ties with her, and we haven’t spoken for decades.
Output: [Disagreement Interruption: I disagree, I don’t think that’s
being too sensitive.]

Topic-changing Interruption: Input: I threw away that birthday
card, don’t overthink it. Output: [Topic-changing Interruption: Let’s
not talk about that. Why don’t you tell me about what happened
yesterday?]

Output Format: If it belongs to one of the interruption types,
output: [Interruption Type: Generated content]. If none of the types
apply, output: [None].

A.1.3 Correlation Detection Agent Prompts. You are an expert in
conversational linguistics. Your task is to determine whether there
is logical coherence between two sentences. Specifically, you need
to judge whether the second sentence logically follows from the
first. Output format: The output should be either "true" or "false."

A.2 Interruption Keywords (Translated from
Chinese)

"Stop", "Hold on", "Enough", "Don’t say anymore", "Please stop",
"That’s enough", "Shut up", "Excuse me, let me interrupt", "Sorry to
interrupt", "Let me add something", "Let’s change the topic", "Let’s
talk about something else", "Let’s switch topics", "Another question",
"Attention", "Listen to me", "Hear me out", "Look here", "I don’t want
to listen", "I didn’t hear clearly", "Could you repeat".

A.3 Performance of APIs
Under network conditions with an average download speed of 293
Mbps, an average upload speed of 65.04 Mbps, and an average
latency of 30 ms, the performance metrics of the APIs are presented
in Table 4.

Table 4: Performance of APIs

Phase API Time taken
per turn

Avg. time taken
per turn

STT Paraformer - Around 600 ms
per chunk

LLM Doubao-pro-128k 0.6-2.4s 1.3s
TTS Super smart-tts 0.8-2.3s 1.2s

B User Study
B.1 User Engagement Scale Short Form (UES-SF)

• FA: Focused Attention - This measures the extent to which
users are absorbed in the interaction and lose track of time.

• PU: Perceived Usability - This measures any negative af-
fect experienced during the interaction, such as frustration or
confusion, and assesses the effort needed to use the system.
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• AE: Aesthetic Appeal - This measures the attractiveness
and visual appeal of the interface.

• RW: Reward - This component combines aspects of novelty,
felt involvement, and endurability, measuring whether users
found the interaction valuable and enjoyable and if they’d
recommend it to others.

Table 5: UES-SF for Chatbot Interaction Experience State-
ments

Factor Statement

FA-S.1 I lost myself in this experience.

FA-S.2 The time I spent engaging in the chatbot conversation
just slipped away.

FA-S.3 I was absorbed in this experience.
PU-S.1 I felt frustrated during the chatbot conversation.
PU-S.2 I found the chatbot conversation confusing to engage in.
PU-S.3 Participating in the chatbot conversation was taxing.
AE-S.1 The chatbot conversation was attractive.
AE-S.2 The chatbot conversation was aesthetically appealing.
AE-S.3 The chatbot conversation appealed to my senses.
RW-S.1 Engaging in the chatbot conversation was worthwhile.
RW-S.2 My experience was rewarding.
RW-S.3 I felt interested in this experience.

Reverse code the following items: PU-S1, PU-S2, PU-S3.

• If participants have completed the UES more than once as
part of the same experiment, calculate separate scores for
each iteration. This will enable a comparison of engagement
among participants and between tasks or iterations.

• Scores for each of the four subscales can be calculated by
adding the values of responses for the three items in each
subscale and dividing by three. For example, "Aesthetic Ap-
peal" would be calculated as:

Aesthetic Appeal =
AE-S1 + AE-S2 + AE-S3

3

• The overall engagement score is calculated by adding all of
the items together and dividing by twelve:

Overall Engagement =
FA-S1 + FA-S2 + . . . + RW-S3

12

B.2 Motivations for Interacting with Voice
Agents or Desired Topics

Table 6: Motivations for Interacting with Voice Agents or
Desired Topics of Conversation from the Open-Ended Ques-
tions in the Survey (Translated from Chinese)

ID Motivations or Desired Topics
1 To avoid loneliness

2 Reduced contact with old friends; sometimes feels lonely and wants AI to
simulate old classmates and reminisce about the past

3 To share daily emotions
4 Emotional communication needs and the desire to confide
5 To express work and life pressures

6 Occasionally struggles to understand certain topics when communicating with
children; seeks others’opinions

7 Purely for entertainment
8 Primarily to share: pleasant scenery, culture, and emotions (joys and sorrows)

9 Feels lonely due to children being busy with work; seeks companionship
and conversation

10 To stay informed about people’s needs and new trends, avoiding social
disconnection

11 Enjoys experiencing technology and wants to learn new knowledge through AI

12 To share reflections on reading, domestic and international news, and the latest
updates

13 Emotional needs
14 Always alone and wants someone to talk to
15 Wants to discuss experiences in learning traditional opera
16 Wants to try and experience it; finds it interesting
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