
Designing LLM-Powered Multimodal Instructions to Support
Rich Hands-on Skills Remote Learning: A Case Study with

Massage Instructors and Learners
Chutian Jiang∗

Computational Media and Arts Thrust
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

cjiang893@connect.hkust-gz.edu.cn

Yinan Fan∗
Division of Emerging
Interdisciplinary Areas

The Hong Kong University of Science
and Technology

Hong Kong, China
Smart Manufacturing Thrust

The Hong Kong University of Science
and Technology (Guangzhou)

Guangzhou, China
yfanaw@connect.ust.hk

Junan Xie
Computational Media and Arts Thrust
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

jxie622@connect.hkust-gz.edu.cn

Emily Kuang
Golisano College of Computing and

Information Sciences
Rochester Institute of Technology

Rochester, USA
ek8093@rit.edu

Baichuan Feng
Smart Manufacturing Thrust

The Hong Kong University of Science
and Technology (Guangzhou)

Guangzhou, China
baichuanfeng@hkust-gz.edu.cn

Kaihao Zhang†
Smart Manufacturing Thrust

The Hong Kong University of Science
and Technology (Guangzhou)

Guangzhou, China
Department of Mechanical and

Aerospace Engineering
The Hong Kong University of Science

and Technology
Hong Kong, China

kaihaozhang@hkust-gz.edu.cn

Mingming Fan†
Computational Media and Arts

Thrust & Internet of Things Thrust
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

Division of Integrative Systems and
Design

The Hong Kong University of Science
and Technology

Hong Kong, China
mingmingfan@ust.hk

∗Both authors contributed equally to this research.
†Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’25, Yokohama, Japan

Abstract
Although remote learning is widely used for delivering and captur-
ing knowledge, it has limitations in teaching hands-on skills that
require nuanced instructions and demonstrations of precise actions,
such as massage. Furthermore, scheduling conflicts between instruc-
tors and learners often limit the availability of real-time feedback,
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reducing learning efficiency. To address these challenges, we devel-
oped a synthesis tool utilizing an LLM-powered Virtual Teaching
Assistant (VTA). This tool integrates multimodal instructions that
convey precise data, such as stroke patterns and pressure control,
while providing real-time feedback for learners and summarizing
their performance for instructors. Our case study with instructors
and learners demonstrated the effectiveness of these multimodal in-
structions and the VTA in enhancingmassage teaching and learning.
We then discuss the tools’ use in other hands-on skills instruction
and cognitive process differences in various courses.

CCS Concepts
• Human-centered computing→ Empirical studies in HCI.

Keywords
Remote Massage Learning; Multimodal Teaching and Learning;
Hands-on Training.
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1 Introduction
Remote learning is effective for teaching a wide range of skills,
from language acquisition [19, 80], STEM education [72, 78] to
health and medical training [18, 21]. However, remote instruction
faces some challenges when it comes to teaching hands-on skills—
those that require precise techniques, physical practice, and tactile
feedback. Traditional visual-audio methods, such as video lessons
and online calls, fall short in replicating the nuances needed for
effective training in tasks like mechanical assembly, cooking, or
massage [18]. Massage is one such hands-on skill that is particu-
larly important, as it serves both medical and everyday relaxation
purposes, making proper instruction vital for professionals and
enthusiasts alike [23, 57]. In massage instruction, instructors not
only demonstrate the correct strokes but also guide students in ap-
plying the right amount of pressure. The preciseness of strokes and
pressure control impact the massage’s effectiveness. In these cases,
inadequate instruction may lead to improper techniques, reducing
therapeutic benefits or even causing harm [23]. Some researchers
investigated the solutions to these challenges and developed various
VR/AR-based remote learning systems [10, 18, 27, 71]. For example,
Faridan et al.’s AR-based system used a surrogate to teach students
by demonstrating gestures via AR [18]. However, though improved
learning immersion, most existing solutions focus primarily on
gesture recognition and neglect the crucial aspect of precise pres-
sure control, which was particularly important for massage. This
gap highlighted the need for a more advanced approach that inte-
grates gesture detection, pressure control, and video instructions
to enhance remote learning for hands-on skills.

In addition, according to the deliberate learning theory, real-time
feedback from the instructors is necessary for hands-on skills in-
struction because the learners can immediately correct anymistakes

[7]. The lack of timely feedback can reduce learners’ efficiency in ac-
quiring hands-on skills. However, due to time constraints, teachers
are not always available to provide prompt instructions, which may
hamper the learners’ progress. LLMs, such as ChatGPT are widely
used in educational scenarios, including maths [48, 81], program-
ming [50, 58], language [17], and medicine [45, 61]. For learners,
prior works demonstrated that LLMs could provide real-time feed-
back and customized learning experiences by quickly responding to
questions [58, 70]. For instructors, LLMs could provide updates on
the learners’ progress, which may help them adjust their course and
understand teaching effectiveness [75]. This inspired us to leverage
LLMs as a bridge between instructors and learners—offering real-
time feedback to support learners’ progress in massage learning
and aiding instructors in monitoring and guiding massage teaching.

Therefore, we identified two main challenges of current remote
learning systems: (C1) Difficulty in conveying nuanced hands-on
operations with video demonstration and audio expressions; (C2)
Lack of real-time feedback for remote learning due to instructors’
and learners’ schedule conflicts. To address C1, we designed mul-
timodal instructions consisting of video demonstrations, gesture,
and pressure data to teach learners. To address C2, we designed an
LLM-powered virtual teaching assistant (VTA) to provide the learn-
ers with real-time feedback when the instructors were absent and
provide the instructors with the learners’ performance summaries
to support their instructions. Using the multimodal instructions
and VTA, we investigated the following research question (RQ):

Howmightmultimodal instructions and the LLM-powered
virtual teaching assistant (VTA) support hands-on skills
teaching and learning in the context of massage?

We conducted a case study with four massage instructors and
twelve learners, who used multimodal instructions and VTA over
five sessions. Traditional video instruction was also used as a base-
line for comparison. We found that the multimodal instructions and
VTA could resolve both challenges effectively. To resolve C1, we
found that multimodal instructions could convey nuanced hands-
on operations to improve the teaching and learning experience.
For instructors, the multimodal instructions ensured detailed in-
struction content and ease of creation. For learners, the multimodal
instructions ensured learning massage via clearer and standardized
quantitative data and reduced their mental stress. For resolving
C2, VTA’s real-time feedback and learning performance summary
further enhanced the teaching and learning process. For instructors,
VTA improved their efficiency in analyzing performance records,
provided grounded suggestions and comments, and made them
focus more on critical aspects. For learners, VTA enhanced their
learning confidence and could efficiently bridge the gap between
theory and practice. This case study focused on massage, while we
propose other applications of this system in the discussion, such as
sign language and cooking instruction. In addition, we discussed
the cognitive process differences in various courses that were also
supported by LLM-powered VTA. Our contributions include:

• A synthesis tool using LLM-based VTA to integrate multi-
modal data for remote massage instruction and learning

https://doi.org/10.1145/3706598.3713677
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Figure 1: Overview of the Multimodal Instructions and the LLM-Powered Virtual Teaching Assistant (VTA) for hands-on skills
training in the context of massage: (a) Multimodal Instructions: the learner wears the web camera, Leap Motion hand-tracking
camera, and the pressure sensor while watching the multimodal review of their stroke performance; (b) Real-time review:
the learner asks the VTA to review their massage performance. The VTA provides a review based on the gesture and pressure
difference data. For the gesture difference data, the red hands belong to the learner while the blue hands are from the instructor’s
prerecorded instructions. For the pressure difference data, the color demonstrates the pressure difference between the learner’s
real-time pressure and the instructor’s prerecorded pressure; c) Learners’ performance summary: the instructor asks the VTA
to summarize the learners’ performance and recommends which massage strokes need to be redemonstrated.

• Empirical findings from a case study demonstrating the mul-
timodal instructions and VTA’s effectiveness in helping learn-
ers obtain real-time feedback and aiding instructors to ana-
lyze learners’ performance;

2 Related Work
We describe prior remote learning systems and how LLMs are used
for remote learning.

2.1 Remote Learning Systems
Numerous remote learning systems have been developed across
various fields, such as language instruction [19, 80], STEM edu-
cation [20, 72, 78], and health training [18, 21, 25, 57, 66]. These
systems designed for theoretical or linguistic instructions primarily
rely on visual and auditory channels for teacher demonstrations
and instructions. However, teaching and learning hands-on skills,
such as mechanical tasks, cooking, and massage, required precise
operations, which were hard to convey through video demonstra-
tions and audio descriptions. For example, massage involves precise
stroke techniques and hand pressure control, requiring learners to
manage pressure in both fingers and palms simultaneously or sepa-
rately [23]. To address these challenges, researchers have explored
VR/AR-based approaches for remote learning and collaboration
[10, 14, 18, 27, 29, 30, 33, 59, 69, 71]. For instance, Faridan et al. de-
veloped an AR-based system where a surrogate mimics the instruc-
tor’s gestures to teach skills like cooking, massage, and mechanical
tasks [18]. However, despite their enhanced learning immersion,
these systems often focused on gesture recognition and overlooked
the crucial aspect of pressure control, which was particularly impor-
tant for certain hands-on skills such as massage [18, 32]. To address

these limitations, there is a need to design multimodal remote in-
structions that integrate video, stroke demonstrations, and pressure
control, offering a more comprehensive teaching experience.

2.2 LLMs for Remote Learning
Previous research emphasized the importance of deliberate learning
and the critical role of real-time feedback from instructors in correct-
ing errors during hands-on skills acquisition [7]. Current remote
learning systems for hands-on skills often invite an instructor or
collaborator to provide real-time guidance [18, 27, 59, 71]. However,
most of these works fail to address how to provide such support
when instructors or collaborators are unavailable due to constraints
like tight schedules, real-time network or other technical issues,
and unavailability due to reasons like time zone differences or ap-
pointments forgetting. The absence of timely feedback may hinder
learners’ efficiency in acquiring hands-on skills, particularly when
instructors are unavailable for extended periods.

LLMs, such as ChatGPT, are increasingly being adopted in edu-
cational settings across diverse domains, including STEM educa-
tion [22, 40, 48, 49, 81], programming [11, 38, 39, 50, 58], language
learning [17], and medical education [45, 61, 70]. These applica-
tions highlight the versatility of LLMs in facilitating learning and
problem-solving. Research has identified several benefits of utilizing
LLMs in education, such as personalized tutoring [9], automated
essay grading [53, 79], language translation [6, 77, 82], interac-
tive learning [16, 37], and adaptive learning [41, 65]. Building on
these advancements, researchers have begun exploring the poten-
tial of LLMs in massage therapy and instruction. For example, Shen
et al. reviewed the progress of machine learning techniques and
highlighted the potential benefits of LLMs in traditional Chinese
massage [63]. However, they also emphasized three key challenges:
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difficulties in data access and labeling, issues with model train-
ing and optimization, and the necessity for clinical validation to
establish credibility. Similarly, Baskwill et al. discussed the oppor-
tunities for incorporating LLMs into massage research, practice,
and education, suggesting that these models could help instructors
design personalized and interactive learning experiences or gener-
ate prompts and ideas for learning activities and assessments, as
proposed by Baidoo-Anu and Ahsah [2, 3]. LLMs offer promising
applications for both learners and instructors. For learners, they
provide real-time feedback and personalized learning experiences,
enabling efficient self-study even without direct instructor super-
vision. For instance, LLMs can deliver tailored answers, solutions,
and suggestions, catering to individual needs throughout the learn-
ing process [58, 60, 70]. For instructors, LLMs enhance teaching
by offering insights into student progress, refining course content,
and improving teaching strategies [75]. Inspired by these needs
and applications, we leveraged LLMs to bridge the gap between in-
structors and learners in massage education. By providing real-time
feedback, our approach supports learners in mastering massage
techniques while assisting instructors in delivering more effective
teaching.

3 Multimodal Instructions and Virtual Teaching
Assistant Design for Massage Teaching and
Learning

We begin by outlining the challenges associated with remote learn-
ing and teaching hands-on skills, followed by presenting potential
solutions. Next, we demonstrate the implementation of precise
remote instructions for hands-on skills. Finally, we showcase the
remote learning functionalities that support these processes.

3.1 Current Challenges and Potential Solutions
of Hands-on Skills Remote Teaching and
Learning

We identified two main challenges of current remote hands-on
skills teaching and learning. From Section 2.1, we identified (C1)
the difficulty in conveying nuanced hands-on operations with video
demonstration and audio expressions. From Section 2.2, we identi-
fied (C2) the lack of real-time feedback for remote learning due to
instructors’ and learners’ schedule conflicts.

We also derived design considerations around these challenges.
To address C1: in addition to video instructions, the system should
also capture data that convey hand and finger positions, which
could inform learners whether their hands are in the right shape.
The system should capture pressure data on the fingers and hands,
which could allow learners to understand how much force they
should apply when performing a stroke.

To address C2: the system should integrate an LLM-powered
teaching assistant to provide the learners with real-time feedback
when the learners were not available. Additionally, to ensure that
the instructors understand their learning progress, the LLM-powered
teaching assistant should provide the instructors with the learners’
performance summary.

3.2 Implementation of precise remote hands-on
skills instructions for massage

According to the design considerations, we developed amulti-modal
remote learning system for massage, consisting of point-of-view
(POV) video recording, hand gesture acquisition, hand pres-
sure collection, and Virtual Teaching Assistant (VTA), shown
in Figure 2.

POV video recording.We used a head-mounted web camera
to record the POV video instructions for massage strokes. The
instructors’ audio instructions for each stroke were also recorded.

Hand gesture acquisition.Weused a LeapMotion hand-tracking
camera worn on the neck to recognize the hands’ locations and
gestures of each stroke. The Leap Motion hand-tracking camera
is a commercially available high-precision hand-tracking module
equipped with two cameras and multiple infrared LEDs. It collects
gesture data within the near-infrared spectrum using optical sens-
ing technology [51]. Utilizing the embedded algorithm, the device
could scan up to 200 frames per second with a wide field of view
of 150°, which is sufficient for our massage instructions [24]. The
devices could convert gesture information into each finger-joints’
spatial coordinates. We obtained the positions of the joints and
their flexion angles, demonstrated in Figure 3 a) and b).

Hand pressure collection. Based on prior works, we developed
piezoresistive pressure sensors attached to the gloves that could be
worn on the hands to measure the different strokes’ pressure appli-
cation on hand’s five fingers and palm [36, 46]. The piezoresistive
pressure sensors’ resistance varies with applied pressure, allowing
for the quantification of force through resistance measurements
[76, 83]. We placed the sensors under the five fingers and palms in-
dividually, facilitating a detailed analysis of force dynamics during
various massage techniques.

Virtual teaching assistant (VTA).We developed the VTA us-
ing OpenAI’s GPT-4model, which enabled quick responses through-
out the massage instruction process [55]. The VTA generated per-
sonalized feedback for learners and instructors by analyzing differ-
ences in stroke gestures and pressure, as shown in Figure 2.

Specifically, the differences in gestures and pressure between
the learners’ performance and the instructors’ recorded data were
first computed via a program. For stroke and pressure data, we
calculated each finger’s flexion angle differences and each hand
area’s pressure differences between the learners’ performance and
the instructors’ recorded data. The results of the gesture and pres-
sure differences were then formatted in JSON and integrated into
our prompts. To provide user-friendly feedback, the VTA identified
the most significant portions of the difference data and generated
corresponding reviews or summaries using the Chain-of-Thought
prompting technique [74]. The detailed prompts are in Section 8.

Learners interact with the VTA to ask detailed questions after
watching the instructor’s demonstration videos, such as “what are
the target muscles of this stroke?” and “what are the essences to
perform this stroke?”. A massage instruction database was incor-
porated into our prompts to provide professional massage domain
knowledge [4]. After each stroke, learners could request real-time
feedback in natural language, allowing them to refine their perfor-
mance by comparing it with the instructor’s standards.
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Figure 2: The Multi-modal Remote Learning System for Massage Consists of Four Major Components: 1) POV Video Recording:
records the instructions and learners’ performance; 2) Hand gesture acquisition: collects the gesture data (joints’ coordinates);
3) Hand pressure collection: collects hand pressure data from six areas of each hand (five fingers and palm); 4) VTA: provides
real-time review to the learners and learners’ summaries to the instructions.

Figure 3: Improvements after VTA’s Review and the Instructors’ Feedback (Data from L3): a) Stroke before review/feedback;
b) Stroke after review/feedback; c) Hands’ pressure differences before review/feedback, shown in percentage relative to
the instructors’ recorded data; d) Hand’s pressure differences after review/feedback. The figures demonstrate that after
review/feedback, the learner’s hands’ locations and strokes were more similar to the instructors’ recorded data, and the learner’s
pressure control became close to the instructors’ data.

Instructors could request summaries of learners’ performances
from the VTA, either for all students or individual students. These
summaries highlighted areas needing improvement, enabling the in-
structors to focus on specific strokes that require re-demonstration.
The instructors could then make informed decisions based on both
the VTA’s suggestions and their own assessments.

3.3 Remote Learning Functions
Based on the prior works, such as the interactive online massage
learning system [66] and the teleoperation system for remote in-
struction in hands-on skills [18], we designed seven functions clas-
sified into Instructor Mode and Learner Mode that are shown in
Table 1.

The instructor mode consisted of three functions: multimodal
instruction record, video instruction record, and learner performance
summary. Instructors used multimodal instruction record function

to record video instructions, along with gesture and pressure data.
Video instruction record function allowed instructors to record only
the video instructions. With learner performance summary function,
instructors could request a performance summary of learners from
the VTA, which provided an overview of all or individual learners’
gesture and pressure data, highlighting areas for improvement.

The learner mode included four functions: multimodal instruc-
tion learning, video instruction learning, learner performance record,
and real-time review The learners could use multimdoal instruction
learning function to learn the massage strokes with multimodal
instructions consisting of video instructions, gesture and pressure
differences visualizations. The learners could use video instruction
learning to learn the massage strokes through video demonstrations
only. The learners could use learner performance record to record
their performance for each massage stroke, capturing videos, pho-
tos, gestures, and pressure data of the current stroke. The learners
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Table 1: Seven Functions in two modes: instructor mode, learner mode

Modes Functions Function Descriptions

Instructor Mode

Multimodal instruction record Records the instructor’s multimodal instructions

Video instruction record Records the instructor’s video instructions

Learner performance summary Analyzes the learner’s performance and provides a summary

Learner Mode

Multimodal instruction learning Enables the learner to watch and learn from multimodal instructions

Video instruction learning Enables the learner to watch and learn from video instructions

Learner performance record Records the learner’s performance during practice

Real-time review VTA provides real-time feedback and review to the learner

could use real-time review to request real-time feedback from the
VTA, allowing for immediate review and correction of their current
stroke performance.

4 Case Study
We conducted a within-subjects case study to understand how mul-
timodal instructions and LLM-powered VTA’s real-time feedback
and learning performance summaries might help instructors and
learners by comparing our multimodal instruction (MI) to tradi-
tional video instruction (VI). This research was approved by the
university’s ethics review board.

4.1 Participants and Apparatus
We recruited 12 massage learners (9 males, 3 females), denoted L1
to L12, and 4 massage instructors (1 male, 3 females), denoted I1
to I4, from the local community. All learners had no prior mas-
sage learning experience. The instructors had on average 9 (SD =
4.32) years of massage operation and instruction experience. Each
instructor was randomly assigned three learners.

The experiment setup is illustrated in Figure 2. The user (instruc-
tor or learner) stood close to the human model with their hands
and arms relaxed. The user wore the pressure sensor on the hands
to record the pressure data, a web camera on the head to record
stroke video, and a Leap Motion hand-tracking camera on the neck
to recognize the hands’ locations and gestures. A laptop to record
the audio instruction or listen to the summary from the VTA was
set adjacent to the human model. A display was set in front of the
user for learning instructions and real-time review from the VTA.

4.2 Selection of Strokes
We selected eight strokes for four body positions, including shoul-
ders, back, arms, and neck. The eight strokes were chosen based on
six fundamental techniques from Swedish massage—compression,
petrissage, effleurage, stripping, cross-fiber friction, and trigger-
point therapy (circular friction)—along with four basic hand posi-
tions: flat palms, fingers and thumbs, hand over hand, and fingertips
[4, 54]. These selections were further refined based on suggestions
from experienced massage therapists.

For each body position, we selected 2 massage strokes, which
are shown in Figure 4.

Stroke 1, shown in Figure 4 a), requires working along the length
of splenius capitis and splenius cervicis muscles using muscle
stripping stroke followed by friction to address areas of adhesions.

Stroke 2 shown in Figure 4 b), requires positioning the recipient
on their back and following the steps of effleurage, petrissage,
stripping, and cross-fiber friction to address tension.

Stroke 3 shown in Figure 4 c), is conducted to address the middle
trapezius and rhomboids by tracing the length of the muscles
with a stripping stroke.

Stroke 4 shown in Figure 4 d), uses a circular friction stroke to
work from the top of the shoulders along the length of the shoulder
blade, between the spine and levator scapulae.

Stroke 5 shown in Figure 4 e), is done by placing thefingers and
thumbs for greater depth, applying pressure with the fingertips
while gliding deeply along the biceps, extensors, and flexors

Stroke 6 shown in Figure 4 f), is conducted by applying cross-
fiber friction along the length of the arm. This involves gliding
the fingers across the muscles and moving slowly back and forth
from the outside of the arm to the inside.

Stroke 7 shown in Figure 4 g), is conducted for the kneading
stroke of petrissage, focusing on the thenar eminence. This
involves pinching the thenar eminence gently between the thumb
and forefinger and applying pressure in a circular motion.

Stroke 8 shown in Figure 4 h), involves working gently on
each finger separately. Stripping and compression strokes can
be used to work around the palm from the thenar eminence to
the hypothenar eminence.

4.3 Procedure
The user study consisted of five sequential sessions: 1) Instruc-
tion Record, 2) Remote Learning, 3) Instructor Feedback, 4)
Review and Adjustment, and 5) Instructor Summarization, as
illustrated in Figure 5.

In the Instruction Record session, four instructors recorded VI
and MI for each massage stroke. VI only included the video demon-
stration (with audio instruction). MI included a video demonstration
(with audio instruction) and multimodal data (stroke photograph,
hand area pressure data, and gesture data). The video demonstra-
tions were recorded continuously, while the multimodal data were
recorded in the stroke’s several keyframes based on the instructors’
own decisions. For example, they could have more keyframes for
more complicated strokes and fewer keyframes when the stroke
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Figure 4: Massage Strokes: a) Stroke 1; b) Stroke 2; c) Stroke 3; d) Stroke 4; e) Stroke 5; f) Stroke 6; g) Stroke 7; h) Stroke 8.

Figure 5: Five Sessions in User Study: a) Instruction record; b) Remote learning, c) Instructor feedback, d) Review and adjustment,
and e) Instructor summarization.

could be easily conducted. Their keyframe selection stayed the
same across the overall instruction process.

During Remote Learning, each learner learned 4 strokes using
MI and the other 4 using VI, with the order alternating between MI
andVI. The sequencewas counterbalanced across participants using
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a Latin Square design (e.g., half of the learners started withMI, while
the other half started with VI). After watching the instructions,
the learners practiced the strokes, and their performances were
recorded with the web camera, the Leap Motion hand-tracking
camera, and the pressure sensor with the same data as the MI.
Learners could review their recordings and revise their performance
until satisfied. Learners using VI could watch the recorded video
instruction.We also provided a PDF version of themassage textbook
on the laptop in the experiment room [4]. In contrast, for strokes
with MI, learners could review their performance by watching the
recorded video performance, the strokes, and pressure difference
visualizations, and asking VTA to comment on their performance.
The final performance recording was then sent to the instructor.
Learners rated confidence in their performance using a 7-point
Likert scale (1 being not confident at all, 7 being fully confident).

In the Instructor Feedback session, the instructor used the VTA
to understand each learner’s performance by requesting a detailed
summary. This summary included deviations in hand location, ges-
ture data (with angle differences between the same finger of the
instructor and the learner.), and hand area pressure differences, both
individually and averaged across the three learners assigned to that
instructor. The deviations were calculated by measuring the dis-
tance between the hands in the instructional videos and the hands
during the learners’ practice sessions. The stroke differences were
calculated by comparing the finger angle differences. The pressure
differences were calculated by comparing the pressure differences
in different hand areas. Based on the summary provided by the VTA
and their review, the instructors redemonstrated several strokes to
help the learners revise their strokes and pressure application. The
feedback for each stroke maintained the same condition (MI or VI)
as the initial instructions.

In the Review and Adjustment session, learners revised their
performance based on the instructors’ feedback instructions. They
could record their revised performance until satisfied, and their
performance was then sent back to the instructors. Learners rated
their confidence levels after receiving feedback, overall satisfaction
with the system, the system’s ease of use, the instruction’s clarity,
and the instruction’s ease of use on a 7-point Likert scale for the
MI and VI conditions.

Finally, in the Instructor Summarization session, the instruc-
tor reviewed each learner’s final performance and the VTA’s sum-
mary, which included comparisons with previous performances.
They commented on the learners’ performance improvement and
the overall instruction process. Instructors rated their overall satis-
faction with the system, instruction effectiveness, and the system’s
ease of use on a 7-point Likert scale for the MI and VI conditions.

After the sessions, both instructors and learners participated in
semi-structured interviews to review their teaching and learning
experiences.

4.4 Data Analysis
The feedback in each session and interviews with instructors and
learners was transcribed using the transcription service from Zoom.
Then a researcher rewatched the recording to correct any transcrip-
tion errors. Two researchers independently coded the feedback and
interviews using an open coding approach [15]. They then met to

resolve any disagreements and consolidate codes. Afterward, they
grouped the codes to identify the main themes on the instructors’
experience and the main themes on the learners’ experience. For
all Likert ratings, we report the median and IQR. In addition, we
conducted paired sample t-tests to determine whether the type of
instruction significantly impacted learners’ ratings.

5 Results
We report the results according to the multimodal instructions’ and
VTA’s effectiveness in addressing C1 and C2 from two perspec-
tives, shown in Figure 6: 1) Benefits of Multimodal Instructions
for Nuanced Hands-on Operations; 2) Benefits of VTA’s Real-time
Feedback and Learning Performance Summary.

The instructors’ and learners’ user experience ratings are shown
in Figure 7. All instructors were satisfied with the efficacy of the
multimodal instructions and VTA’s performance summary in teach-
ing Massage. As shown in Figure 7 (top), instructors were more
satisfied with MI (Md = 6.5, IQR: 1) than VI (Md = 5, IQR: 0.2). In
addition, all learners were also satisfied with the efficacy of the
multimodal instructions and VTA’s real-time feedback in learning
Massage. Paired sample t-tests revealed that learners were signifi-
cantly more satisfied with MI (Md = 6, IQR: 0) compared to VI (Md =
4, IQR: 2), 𝑡 (11) = −6.66, 𝑝 < 0.05. The ratings are shown in Figure
7 (bottom).

5.1 Benefits of Multimodal Instructions for
Nuanced Hands-on Operations

From our coding results, we identified two themes regarding how
multimodal instructions benefited instructors and two themes for
learners. The instructors’ two themes included: detailed instruction
content from multimodal instructions, and multimodal instructions’
ease of creation. The learners’ two themes included: clearer and
standardized quantitative data using multimodal instructions, and
mental stress reduction from multimodal instructions.

5.1.1 Detailed Instruction Content from Multimodal Instructions
(For Instructors). All instructors reported that MI (Md = 6.5, IQR: 1)
was more effective in teaching various massage strokes compared
to VI (Md = 5.5, IQR: 1). During VI, instructors demonstrated the
strokes while providing verbal explanations on how to perform
the movements and apply pressure. However, this method often
required vague descriptions, such as “apply more pressure here” or
“stretch your hands further.” In contrast, MI allowed for the quan-
titative measurement of strokes and pressure. Beyond only video
demonstrations and audio descriptions, MI enabled instructors to
offer more precise instructions that could not easily be conveyed
with VI. I1 highlighted this by stating: “Video instruction could only
convey the basic elements of each massage stroke, such as hand place-
ment and stroke technique. Traditionally, we would practice pressure
control on learners’ bodies, allowing them to feel the intensity directly,
which is not possible with video instruction.”

5.1.2 Multimodal Instructions’ Ease of Creation (For Instructors).
Instructors reported that MI (Md = 6.5, IQR: 1) was slightly easier
to use compared to VI (Md = 6, IQR: 1). I2 and I3 initially found
that recording MI involved more steps than recording VI, such as
wearing pressure sensors and setting up the Leap Motion camera.
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Figure 6: Summary of results showing how the multimodal instructions and VTA’s real-time feedback and summary addressed
the challenges and themes identified from qualitative coding.

They also noted a learning curve when first adapting to the system,
especially because of their limited technical background. During
this process, they spent time familiarizing themselves with the
functions and operating procedures. However, once they mastered
the technology, the operation became smooth and efficient. The
simplicity of using a single button to start and stop the sensors made
the operation less demanding than participants had anticipated.

I1 and I4 found that MI was easier to use than VI, mainly be-
cause they no longer needed to explain the vague details of stroke
techniques and pressure control. I4 stated: “When recording mul-
timodal instruction, I can focus on the essence of each stroke and let
the pressure and gesture data convey the basics.”

Additionally, the relative ease of creating MI was partly attrib-
uted to the instructors’ educational backgrounds. Most instructors
had not received a formal college education but had focused on
mastering practical massage skills. This made it more difficult for
them to teach complex theoretical concepts, but MI allowed them
to focus on demonstrating hands-on techniques, which they found
more intuitive and natural to teach.

5.1.3 Clearer and StandardizedQuantitative Data using Multimodal
Instructions (For Learners). The learners appreciated massage learn-
ing via quantitative data because it was clearer and standardized.

The learners reported that MI was clearer for learning massage
strokes, with a median rating of 6 (IQR: 1), which was significantly
higher than VI (Md = 5, IQR: 1.2), 𝑡 (11) = −5.42, 𝑝 < 0.05. They
mentioned that the MI provided visualizations of necessary data,
including the instructors’ video demonstrations, and the stroke and
pressure differences displayed on the interface. The multimodal
data helped learners easily assess their performance and make
precise corrections. By contrast, while VI offered clear verbal and
visual demonstrations, they only provided a rough overview of
each stroke, making them less effective for detailed understanding.
L6 mentioned that: “When I learned massage by myself, it was hard
to perform precise strokes and I did not know where to apply pressure.
This tool allows me to understand exactly where I should revise.”

In addition, they appreciated the standardized instructions pro-
vided by MIs. They mentioned their previous video-based remote
learning experience that, since each instructor taught from a differ-
ent perspective, learners had towatchmultiple videos to understand
the essence of the same stroke, leading to confusion and inconsis-
tency in their learning. For example, L11 mentioned: “I watched
several videos of the same stroke, but each one had slightly differ-
ent hand positions or stroke motions, which left me unsure of the
correct technique.” This lack of standardization often resulted in
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Figure 7: Diverging stacked bar chart showing the subjective ratings from Instructors and Learners: (top) Instructors ratings:
overall satisfaction, instruction effectiveness, and ease of use; (bottom) Learners ratings: confidence after first round instruction,
confidence after VTA and instructor feedback, overall satisfaction, ease of use, and clarity of instruction. For both instructors
and learners, MI achieved higher median ratings.

gaps in their understanding, making their learning process more
challenging and imprecise.

5.1.4 Mental Stress Reduction from Multimodal Instructions (For
Learners). Most learners reported that learning through MI de-
creased their mental stress compared to traditional in-person meth-
ods. In traditional in-person learning, learners were often required
to practice massage techniques on the bodies of instructors or part-
ners, while being observed by others. This public environment
created anxiety, as learners feared making mistakes in front of their
peers, instructors, or partners, leading to higher stress levels and a
less focused learning experience.

MI, however, offered a private learning experience where learn-
ers could practice alone. Without the pressure of being watched,
learners felt more at ease and could concentrate better on their
strokes and pressure control. One learner explained that practic-
ing on a human model, rather than a real person, also reduced
the stress of potentially causing discomfort or harm. The private
and controlled environment allowed them to learn without fear

of judgment or failure. L5 commented on how this environment
improved their focus: “Learning alone makes me more focused on
the stroke and less likely to be disturbed by others. I preferred this
learning method over the crowded classroom environment.” In this
case study, VI achieved similar results, as the social pressure present
in in-person instruction was also reduced with VI.

5.2 Benefits of VTA’s Real-time Feedback and
Learning Performance Summary

From our coding results, we identified three themes regarding how
the VTA helped instructors and two themes for learners. The in-
structors three themes included: efficiency improvement in analyzing
performance records via VTA, grounded suggestions and comments
from the VTA, and enhanced focus on critical aspects using VTA .
The learners two themes included: enhanced confidence using VTA’s
real-time feedback and instructors’ feedback, and bridging the gap
between theory and practice through VTA’s real-time feedback.
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5.2.1 Efficiency Improvements in Analyzing Performance Records
via VTA (For Instructors). The VTA improved instructors’ efficiency
in reviewing learners’ performance records. Initially, instructors
individually analyzed each learner’s performance records. Over
time, they began to rely on the VTA to provide comments and
recommend which strokes required further instruction or demon-
stration. Instructors based their decisions on the VTA’s feedback
and suggestions.

Each instructor was responsible for three learners, with each
learner having eight performance records. In total, this meant each
instructor needed to review 24 performance records, which typically
took at least 30-45 minutes to analyze and summarize without the
VTA. The VTA’s feedback and recommendations helped reduce the
time spent reviewing these records. Some instructors noted that the
VTA saved more than 20 minutes in the analyzing and summarizing
process (I1, I4). They also mentioned that the VTA would be even
more beneficial with a larger number of learners. As I1 observed:
“Although I could review the performance records myself, it is much
faster to see or hear the VTA’s summary.”

5.2.2 Grounded Suggestions and Comments from the VTA (For In-
structors). The VTA could provide grounded suggestions and com-
ments based on learners’ performance data. Most instructors, except
I2, expressed confidence in the VTA’s recommendations because
they were grounded in detailed performance data for each learner.

For instance, I3 compared her own summary of stroke 8 with the
VTA’s summary and found the VTA’s analysis more accurate. The
VTA highlighted subtle differences that I3 had overlooked, such as
the varying pressure applied to different parts of the hand. I3 had
only focused on the pressure applied to the palm but missed that
some learners exerted excessive pressure on the pinky finger. I4 also
emphasized the VTA’s effectiveness in summarizing quantitative
data, stating: “The VTA reviews all the data and summarizes learners’
performance. I believe that AI can summarize quantitative data, such
as gesture angles and pressure, better than me.”

However, I2 expressed concerns about over-relying on the VTA.
She felt that while the AI’s comments and suggestions were based
on comprehensive data, it was still important for instructors to un-
derstand individual learners’ differences in stroke techniques and
pressure control. I2 felt it was more responsible to customize feed-
back instructions to each learner’s drawbacks instead of recording
common instructions for all learners based on the VTA’s summary.

We also observed that the VTA occasionally hallucinated by gen-
erating inaccurate summaries of learners’ performance. It tended
to exhibit a lenient and overly favorable bias towards learners’ per-
formance. For instance, I3 pointed out that the VTA inaccurately
described a learner’s stroke as “perfect,” despite her observation
that some fingers were insufficiently bent. This discrepancy likely
arose from the VTA’s reliance on calculated data, which categorized
degree differences smaller than 2 degrees as negligible. This thresh-
old may have seemed reasonable when the required adjustment
exceeded 20 degrees, as 2 degrees represented less than 10% of the
total correction needed. However, I3, relying on photos and videos,
could detect subtle variations that the VTA’s numerical thresholds
overlooked. To mitigate this issue, I3 asked follow-up questions
by prompting the VTA to provide detailed degree differences. By

offering precise numerical data, the VTA allowed instructors to
identify and address subtle discrepancies.

5.2.3 Enhanced Focus on Critical Aspects using VTA (For Instruc-
tors). The VTA aided instructors by handling the correction of
basic errors, allowing them to concentrate on more professional
aspects of massage strokes. For instance, instructors could focus
on enhancing the flexibility of learners’ strokes and improving
the continuity between different keyframes of a stroke to reduce
recipients’ nervousness and improve their overall experience.

By identifying and addressing obvious mistakes, such as incor-
rect hand positions and stroke deformations, during real-time re-
views, the VTA streamlined the error correction process. This effi-
ciency enabled instructors to focus on more nuanced, professional-
level errors that the VTA might not detect. For example, they could
study the flexibility of learners’ strokes and the continuity of dif-
ferent strokes because it affected the recipients’ experience. I4 ex-
pressed appreciation for this functionality, noting: “The VTA is a
valuable teaching assistant that reduces the repetitive task of correct-
ing basic mistakes. It allows me to focus on more intricate errors that
require my professional insight.” This approach enhanced the overall
teaching process by ensuring that both basic and advanced errors
are addressed effectively.

5.2.4 Enhanced Confidence using VTA’s Real-time Feedback and
Instructors’ Feedback (For Learners). MI enhanced the learners’ con-
fidence in learning massage strokes after they received the VTA’s
real-time feedback and the instructors’ feedback instructions.

Before receiving the VTA’s review and the instructors’ feedback
(after first round instruction), learners reported significantly higher
confidence when using MI (Md = 5, IQR: 1) compared to VI (Md
= 3, IQR: 1), 𝑡 (11) = −5.63, 𝑝 < 0.05. After receiving the review
and feedback (after VTA and instructor feedback), their learning
confidence increased, and MI (Md = 6, IQR: 1) was significantly
higher than VI (Md = 5, IQR: 1), 𝑡 (11) = −8.04, 𝑝 < 0.05.

The learners attributed their increased confidence to the VTA’s
real-time review, which helped them immediately correct basic
errors, such as improper hand positions or stroke deformations.
The VTA provided user-friendly feedback in natural language, much
like a patient human instructor. Additionally, learners could ask the
VTA about the essence of each stroke and other related questions,
such as the stroke’s benefits for the recipient or detailed information
about the muscles involved. This extra information deepened their
understanding of each stroke, giving them a stronger sense of truly
learning something valuable.

Furthermore, after receiving detailed feedback instructions from
instructors, learners could identify and correct more professional-
level mistakes that the VTA had not detected, such as fine-tuning
pressure applications in specific areas and stroke flexibility adjust-
ments. L3 highlighted this by saying: “I thought I had done well
after the VTA’s review, but my instructor pointed out more nuanced
mistakes that I hadn’t noticed. After receiving that feedback, I felt
much more confident in my performance.” In contrast, with VI, they
could only imitate the instructor’s movements without fully under-
standing the appropriate strokes and related information that was
not told by the instructors, making it harder for them to believe
they had mastered the strokes.
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5.2.5 Bridging the Gap Between Theory and Practice through VTA’s
Real-time Feedback (For Learners). VTA’s real-time feedback could
efficiently bridge the gap between theory and practice and thus
could enhance the learners’ massage learning efficiency.

In traditional remote learning, learners could only practice on
themselves or friends and family members, but they lacked pro-
fessional feedback. While they could sense basic aspects like hand
placement or pressure, they did not receive expert guidance or
corrections, limiting their ability to improve.

In traditional in-person learning, learners often struggled to
immediately apply classroom lessons because they had to wait for
instructors or partners to be available for practice. This process
was inefficient and required multiple sessions with different people
to fully connect theory with practice, which is time-consuming.

MI, however, addressed these issues by providing immediate,
real-time feedback through the VTA, allowing learners to correct
basic mistakes and refine their techniques independently. Once
their practice reached a certain level, instructors could offer more
in-depth, professional insights, focusing on subtler aspects of the
massage strokes. This process accelerated the learning cycle, mak-
ing it easier to integrate theoretical concepts with practical skills.

6 Discussion
We conducted a user study to explore how our multimodal instruc-
tions and LLM-powered VTA could help hands-on skills teaching
and learning in the context of massage. The study revealed that
multimodal instructions and LLM-powered VTA improved both the
instructors’ teaching efficiency and the learners’ learning outcomes
by effectively resolving the two challenges : (C1) the difficulty in
conveying nuanced hands-on operations with video demonstration
and audio expressions; (C2) the lack of real-time feedback for re-
mote learning due to instructors’ and learners’ schedule conflicts.
To address C1, we found that multimodal instructions could convey
nuanced hands-on operations to improve the teaching and learning
experience. To address C2, we found that VTA’s real-time feedback
and learning performance summaries could enhance the teaching
and learning experience. We then discuss our work from three per-
spectives: extending multimodal instructions to more hands-on skills
teaching, cognitive process differences in various courses supported
by LLM-powered TAs, and strategies to address incorrect responses
from the VTA.

6.1 Extending Mutimodal Instructions to More
Hands-on Skills Teaching

Our results confirmed that multimodal instructions, which incorpo-
rate both gesture and hand pressure data, are effective in conveying
nuanced operations for hands-on skills. These findings align with
prior work suggesting that adding haptic feedback and accurate
gesture tracking improves the teaching of hands-on skills [18].
However, the data required for effective instruction vary depend-
ing on the nature of the skill being taught. To illustrate this, we
compare the instructional needs of three distinct hands-on skills:
sign language, massage, and cooking.

Sign language instruction demands precise gesture capture and
facial expression recognition. In American Sign Language (ASL),
the same hand movement can have different meanings depending

on the facial expression that accompanies it [43, 44]. Therefore,
any multimodal instructions for sign language must include both
hand and facial expression tracking to ensure accurate communi-
cation. Based on the themes identified in Section 5, all themes for
instructors can be generalized to sign language, as it also requires
specific movements, similar to massage. For learners, all themes
except for clearer and standardized quantitative data can be gen-
eralized, since sign language does not rely on precise angle and
pressure calculations—what matters is that the sign is correct and
understandable [44].

Massage instruction, in contrast, focuses on the precise control
of strokes and hand pressure. This requires multimodal instructions
to collect and compare detailed data on both hand gestures and
pressure. Video demonstrations supplement this data by showing
how different strokes are connected to maintain the continuity of
the massage, which is essential for the recipient’s comfort [4, 18].

Cooking lessons, on the other hand, involve both simple (e.g.,
washing vegetables) and complicated gestures (e.g., chopping and
slicing) that require various levels of precision according to the
gesture selections. In addition, it is important to follow the correct
sequence of actions. Therefore, multimodal instructions for cooking
should focus on tracking the gestures, timing, and order of hand
movements, ensuring learners understand the correct gestures and
proper steps to complete a dish successfully [18, 26, 64]. For instruc-
tors, the theme of improved efficiency in analyzing performance
records may be less relevant because, in cooking, the focus is more
on the final result of the dish rather than on the precise movements
during the process [26, 64]. Similarly, for learners, the theme of
clearer and standardized quantitative data may not be as applicable
in cooking, where the emphasis is more on timing and sequence
rather than specific angles or pressure differences.

In summary, while the core concept of multimodal instructions
remains consistent, the specific data and sensor requirements vary
depending on the skill being taught. Instructors need to identify the
key aspects of each skill—whether it be gesture precision, precise
pressure control, or step sequencing—and adapt their multimodal
instructions accordingly to provide the most effective learning
experience.

6.2 Cognitive Process Differences in Various
Courses Supported by LLM-powered TAs

We found that the VTA effectively supports the teaching and learn-
ing of hands-on skills, particularly massage instruction. Prior works
have also explored LLM-powered TAs in various fields, such as sci-
ences [1, 40, 47], maths [68, 73], and languages [17, 31]. Many of
these works mentioned the importance of real-time feedback from
the LLM-powered TA to the learning process.

Maiti et al. analyzed student questions posed to LLM-powered
TAs across different disciplines, classifying them into six cognitive
levels according to Bloom’s taxonomy: Remember, Understand,
Apply, Analyze, Evaluate, and Create. The types of questions reflect
the learner’s cognitive process, from basic to advanced levels [5,
52, 56]. Our study found that learners in massage instruction often
asked questions at the “Analyze” and “Evaluate” levels, such as,
“How much more pressure should I add to the index finger” or “How
much more should I bend my ring finger to match the instructor’s
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stroke?” In contrast, learners in sciences, maths, or language courses
frequently ask questions that reach the highest “Create” level, such
as how to design new solutions based on theoretical knowledge.
This discrepancy may stem from two key factors: differences in
course goals and potential negative effects.

Course Goals. Hands-on skills require understanding precise
operations and step-by-step execution, so learners focus more on
“how” rather than “why.” In contrast, sciences, maths, and language
learners are often expected to understand both “how” and “why” to
eventually create something new. Therefore, it is appropriate that
hands-on learners focus on “Analyze” level questions, especially in
massage instruction.

Potential Negative Effects. In hands-on instructions like mas-
sage, machine assembly, cooking, and haircutting, incorrect execu-
tion may lead to harm to the operators and recipients, making the
precision of operations crucial. Conversely, in sciences, maths, and
language courses, the worst outcome is often limited to poor aca-
demic performance. As a result, hands-on skills learners prioritize
nuanced operational questions, such as strokes and pressure control,
over theoretical inquiries. In our study, learners frequently asked
how to match the instructor’s strokes, focusing on minimizing risks
rather than exploring the theoretical basis for each stroke.

6.3 Strategies to Address Incorrect Responses
from the VTA

Our findings revealed that the VTA provided performance sum-
maries that contained inaccuracies, contradicting the quantitative
data. These inaccuracies are consistent with the phenomenon of
“factual contradiction” identified in previous studies, where LLM
outputs are based on real-world information but introduce errors or
inconsistencies [28]. Similar challenges have been reported in fields
like massage diagnosis. For example, Chen et al. noted the risks of
LLM misdiagnosis during the massage process, attributing these
errors to prediction mechanisms and training data that may not
generalize well to individual cases [63]. Future research could focus
on making the VTA’s summaries more accurate by incorporating
quantitative data and prompting it to be more precise.

Additionally, participants asked follow-up questions when they
suspected a hallucination, but if they missed the error, it could
lead to inaccurate outcomes. This suggests that future VTAs could
benefit from incorporating cognitive forcing functions—strategies
that prompt critical thinking during decision-making and have been
shown to help users recognize AI errors and reduce overreliance
on AI [8]. For instance, the VTA could prompt instructors to ask
follow-up questions or reference instructional materials, which
would help mitigate overreliance on the VTA’s summaries.

6.4 System Improvement
Currently, our system primarily supports strokes performed with
the fingertips and palms. However, certain types of massage, such
as Thai massage, involve using additional body areas, such as the
knees or feet, to assist in stretching or applying pressure. To effec-
tively teach these techniques, it is important to capture pressure
data from various body areas and whole-body postures. Since wear-
ing traditional stiff pressure sensors across the entire body may be
impractical, future research could investigate alternative methods

for supporting a wider range of body areas and postures, while
maintaining the freedom of movement essential for massage in-
struction. Therefore, there is a need for flexible sensors with high
deformation capacity and biocompatibility [62, 67]. Refereded from
prior werable devices, these sensors can be worn on various body
areas with excellent conformability, enabling the collection of pres-
sure data for a wider range of massage strokes, [13, 34, 35, 62].
For instance, Sharma et al. developed a wearable pressure-sensing
system using MXene composite nanofibrous scaffolds, capable of
detecting pressure and strain on areas such as the wrist, throat, and
face [62].

Additionally, we collected and analyzed the pressure data from
five fingers and the palms of both hands. However, to capture more
nuanced variations in pressure distribution across the smaller areas
in palms or fingers, we need to develop a pressure sensing sys-
tem with higher spatial resolution. To achieve this goal, improved
fabrication processes and materials need to be explored [12, 42].
For example, Chen et al. developed a high-resolution sensing array
based on piezoresistive strain transducers, achieving a sensitivity
of 0.13 𝑘𝑃𝑎−1 [12]. This advancement may enable a more refined
understanding of pressure dynamics during massage, facilitating
improved feedback and instruction methods.

Moreover, a challenge of our system is its reliance on a head-
mounted camera, a LeapMotion hand-tracking camera, and piezore-
sistive pressure sensors attached to gloves. This setup is resource-
intensive and could be costly for practical applications. In the future,
we aim to reduce the overall system cost to make it scalable and
more accessible for learners and instructors. For instance, we plan
to explore the use of cost-effective cameras for gesture recognition
and develop lower-cost sensor fabrication techniques.

6.5 Limitations and Future Work
In this work, we used massage as a case study to explore the ef-
fectiveness of an LLM-based synthesis tool that integrates and
provides real-time feedback for teaching and learning hands-on
skills. Consequently, we addressed several limitations specific to
massage instruction in our current study and proposed directions
for future development.

This case study focused on two conditions: MI (which included
multimodal information and an LLM-supported VTA) and VI (which
included video and audio information), with VI serving as a baseline
representing current real-world practices. Future research could
explore additional conditions to isolate specific components of MI,
such as pressure differences or gesture differences. This would
allow for a more detailed evaluation of which component is most
beneficial for remote massage instruction.

In addition, each learner in our study received instruction from
only one instructor. Future research could examine whether learn-
ing frommultiple instructors, whomight perform the samemassage
stroke with slight variations, causes confusion, and explore ways
to address the challenges this may introduce. For instance, pressure
and gesture data might need to accommodate multiple reference
points rather than relying on a simple binary comparison between
one instructor and the learner.

Furthermore, this study focused on massage instruction with
a limited sample of four instructors and twelve learners. In the
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future, we aim to expand this work through both large-scale and
longitudinal studies. For a large-scale study, we plan to involve a
greater number of instructors and learners while examining addi-
tional factors, such as gender, age, and variations across different
types of massage, including Thai massage and Chinese traditional
massage. For a longitudinal study, we intend to explore how our
system supports learners and instructors over an extended learning
period. This will include comparing the effectiveness of our system
with traditional face-to-face and remote instruction methods to
better understand its long-term benefits and limitations.

Additionally, we plan to employ both theoretical and practi-
cal tests to evaluate the effectiveness of the instruction [18]. For
the theoretical tests, we aim to assess learners’ understanding of
massage-related theoretical knowledge, including muscle and skele-
tal anatomy, as well as the indications and contraindications of
massage. For the practical tests, we intend to evaluate learners’
performance on real massage recipients and gather feedback from
both the recipients and experienced massage instructors. Various
parameters will be assessed to ensure a comprehensive evaluation.
For the learners, we will examine factors such as the continuity and
diversity of their strokes and whether they apply the appropriate
strokes to the correct positions. For the massage recipients, we will
measure physiological changes, including muscle tension, blood
pressure, and heart rate, both before and after the massage.

7 Conclusion
In conclusion, we conducted a within-subjects case study to under-
stand how a synthesis tool an LLM-based VTA to integrate multi-
modal data for remote massage instruction and learning might help
instructors and learners by comparing it to traditional video instruc-
tion. The results showed that our system improved the instructors’
and the learners’ teaching and learning experience by effectively
resolving the two challenges: (C1) the difficulty in conveying nu-
anced hands-on operations with video demonstration and audio
expressions; (C2) the lack of real-time feedback for remote learn-
ing due to instructors’ and learners’ schedule conflicts. For C1, we
found that multimodal instructions could convey nuanced hands-
on operations to improve the teaching and learning experience.
For C2, we found that VTA’s real-time feedback and learning per-
formance summaries further enhanced the teaching and learning
process. Moreover, we discussed extending multimodal instructions
to more hands-on skills teaching and cognitive process differences
in various courses supported by LLM-powered TA. Our work serves
as a valuable reference for the future development of multimodal
remote instructions and LLM-powered virtual teaching assistants
to facilitate the teaching and learning of other hands-on skills.
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8 Appendix
8.1 Prompts for VTA
8.1.1 Prompts for the Role of the VTA. You are a helpful massage
teaching assistant. You need to help with analyzing students’ mas-
sage training data. The following is a stroke description used by
teachers and students: certainStroke. For each stroke, we have the
stroke data representing the accuracy of the action posture and
pressure data representing the accuracy of the action force.

For stroke data, we provide data on the finger’s bending angle.
For pressure data, you categorize the human hand into the right

and left hands, each further subdivided into several specific areas.
Each hand has areas designated for the tips and rests of the fin-
gers: the thumb, index, middle, ring, and pinky fingers have their
respective tip and rest regions identified. Additionally, the palm
is divided into upper, middle, and lower palm areas, which cover
different vertical segments of the palm itself. Two specific areas, the
hyperthenar and thenar, are noted for their position on the edge of
the palm near the pinky and thumb, respectively.

8.1.2 LearnerMode Review Prompts. The learnermode review prompts
include the stroke data calculation prompts, stroke data re-
sponse prompts, pressure data calculation prompts, and Pres-
sure data response prompts.

Stroke data input prompts The following is a JSON file of the
stroke difference between the student and the instructor.

This dictionary describes the angle difference in the degree of
curvature of each finger on both hands between student and in-
structor. The dictionary is divided into two parts: “right hand” and
“left hand.” Each section contains five keys representing five fingers:
thumb, index finger, middle finger, ring finger, and little finger.

The positive values mean that the finger of the student is bent
more than the instructor’s standard finger, the negative values mean
that the finger of the student is not curved enough compared to
the instructor’s standard finger, and a value of 0 indicates that the
bending angle of the fingers is the same.

The content of the JSON file is: strokeDiffInfo
Stroke data response prompts
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Now please tell me how far I am from the instructor’s standard
movements based on the above information, i.e. what do I need
to do to improve. Please note: your response should be on the
colloquial side, not directly stating a numerical value, but describing
the magnitude in more general terms. Your response should match
the tone of an instructor teaching students.

Keep your answers as concise as possible.
Pressure data input prompts The following is a JSON file of

differences between teachers and students. By comparing hand
pressure data from both groups, the data differences are calculated.

A negative value means that the student’s force was less than the
teacher’s standard force and should apply more pressure next time.
A positive value means that the student’s force was more than the
teacher’s standard force and should apply less pressure next time.
If the dictionary is empty, it means that the student used the same
force as the teacher. For example, if “leftHand”: , it means that all
fingers of the student’s left hand perform as well as the teacher’s.

The content of the JSON file is: pressureDiffInfo

Pressure data response promptsNow, based on this difference
JSON file, tell me how to adjust the pressure of my hand for the
next time. Please note: your response should be on the colloquial
side, not directly stating a numerical value, but describing an extent.
Don’t mention anything that doesn’t need to be changed.

Note that your description should use intensity adverbs appropri-
ately and describe according to the hand sections I provided. Your
response should match the tone of an instructor teaching students.
Keep your answers as concise as possible.

8.1.3 Instructor Mode Summary Prompts. You are a teaching as-
sistant specializing in massage, and your task is to report back to
the teacher on the student’s learning based on the pressure data
generated by each student using the same gesture, and to select two
to four of the eight gesture data for the teacher to re-demonstrate
based on the student’s performance, giving reasons for it.

The descriptions of the differences in each student’s stress data
are stored in the JSON files.
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