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Figure 1. Overview of SplattingAvatar featuring Mesh-Embedded Gaussian Splatting. Our method takes (a) monocular videos as input,
while employing (b) a trainable embedding technique for Gaussian-Mesh association. (c) Animated by mesh through the learned embedding,
the Gaussians render into high-fidelity human avatars. (d) SplattingAvatar demonstrates real-time rendering capabilities in Unity, achieving
over 300 FPS on an NVIDIA RTX 3090 GPU and 30 FPS on an iPhone 13 (images captured in action).

Abstract

We present SplattingAvatar, a hybrid 3D representation
of photorealistic human avatars with Gaussian Splatting em-
bedded on a triangle mesh, which renders over 300 FPS on a
modern GPU and 30 FPS on a mobile device. We disentangle
the motion and appearance of a virtual human with explicit
mesh geometry and implicit appearance modeling with Gaus-
sian Splatting. The Gaussians are defined by barycentric
coordinates and displacement on a triangle mesh as Phong
surfaces. We extend lifted optimization to simultaneously op-
timize the parameters of the Gaussians while walking on the
triangle mesh. SplattingAvatar is a hybrid representation of
virtual humans where the mesh represents low-frequency mo-
tion and surface deformation, while the Gaussians take over
the high-frequency geometry and detailed appearance. Un-
like existing deformation methods that rely on an MLP-based
linear blend skinning (LBS) field for motion, we control the
rotation and translation of the Gaussians directly by mesh,
which empowers its compatibility with various animation

techniques, e.g., skeletal animation, blend shapes, and mesh
editing. Trainable from monocular videos for both full-body
and head avatars, SplattingAvatar shows state-of-the-art ren-
dering quality across multiple datasets. Code and data are
available at https://github.com/initialneil/
SplattingAvatar.

1. Introduction

The demand for personalized, photorealistic, and animat-
able human avatars that render in real-time spans a wide
array of applications, including gaming [48], extended real-
ity (XR) storytelling [10, 19], and tele-presentation [22, 24].
As the quest for digital realism intensifies, practitioners face
a growing challenge: improving the quality of 3D human
models often means increasing the complexity of these mod-
els. This is typically achieved by adding more polygons,
layering skin textures [5], and integrating advanced hair sys-
tems [42]. However, these enhancements invariably lead to
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higher computational demands, creating obstacles in achiev-
ing efficiency and portability in avatar rendering.

In our approach, we categorize the representation of mesh-
based virtual humans into three distinct levels of detail.
The first two levels encompass body motion and surface
deformation, both of which are effectively captured by a
mesh [11, 16, 39]. The third level, however, focuses on geo-
metric details that are crucial for enhancing realism but chal-
lenging to represent with traditional meshes. This level is
not only computationally demanding to render [31] but also
faces limitations due to the rigid connectivity of mesh ver-
tices, which hinders the adaptability to topological changes
and complex or thin structures.

Recent advances in the field have seen a shift towards
using Neural Radiance Fields (NeRF) [32], especially
for capturing high-frequency details in 3D avatar model-
ing [3, 18, 21, 26, 27, 34, 35, 53]. A typical process involves
constructing NeRF in a canonical space and then perform-
ing volume rendering in the posed space. This is done by
tracing ray samples backward from their posed positions to
their canonical origins [21, 34, 35, 53]. However, this reverse
mapping process introduces ambiguities, as a single point in
the posed space might correspond to multiple points in the
canonical space [8, 9], leading to challenges in accurately
rendering details. Additionally, the prevalent use of mul-
tilayer perceptron (MLPs) for motion control [21, 39, 51]
tends to overlook the advantages of mesh-based representa-
tions for capturing surface deformations, an aspect crucial
for realistic avatar movement as highlighted in studies like
DECA [12], CAPE [30], and TalkSHOW [45].

To address the challenges posed by the limitations of
NeRF and MLP-based motion control in capturing high-
frequency details and realistic surface deformations, we in-
troduce a novel solution. Inspired by the recently proposed
Gaussian Splatting technique [23], we propose explicit mo-
tion control of the Gaussians with trainable embeddings on
a mesh. The embedding is described by (k, u, v, d) on the
mesh as Phong surface [38], where (u, v) represents the lo-
cal barycentric coordinates of the embedding triangle k, and
d is the displacement along the interpolated normal vector.
The pose-dependent rotation and scaling adjust dynamically
in response to the mesh warping, while the pose-invariant
properties, i.e., canonical rotation and scaling, color, and
opacity, remain stable and consistent across various poses.
Because the embedding point defined in barycentric coordi-
nates is differentiable only inside the corresponding triangle,
cross-triangle updates must be handled properly [40, 41].
During training, we conduct lifted optimization [38] with
the embedding points walking on the triangle mesh.

Our hybrid representation, Gaussians embedded on a
mesh, can be trained from a monocular video and efficiently
port to Unity that runs in real time (Figure 1) by bringing
together three key advantages. First, the use of the mesh

for representing body motion and surface deformation not
only proves efficient but also allows for high editability. This
flexibility is crucial for adapting the avatar to various sce-
narios and movements. Second, the application of Gaussian
Splatting enriches this model by providing a robust means
to capture high-frequency geometry and appearance details.
This is vital for achieving a level of realism that conven-
tional meshes alone cannot offer. Third, the embedding tech-
nique empowers the Gaussians to be explicitly controlled
by the mesh movements. This integration results in an effi-
cient, clear, and non-ambiguous method for motion control,
significantly reducing the computational load compared to
MLP-based methods.

Furthermore, our approach is distinct from existing hy-
brid models such as AvatarReX [52] and DELTA [14], which
typically segment avatars into body parts like hair, hands,
clothes, and face. Instead, our method achieves a disentan-
glement of motion and appearance. In the SplattingAvatar
framework, although different parts may have specific mo-
tion control, the rendering is uniformly conducted through
Gaussian Splatting. This uniformity achieved by our method
ensures a cohesive and harmonious appearance across all
parts of the avatar.

We summarize our main contributions as follows:

• We introduce a framework that integrates Gaussian Splat-
ting with meshes, offering a new avatar representation
that achieves realism and computational efficiency.

• Our approach applies lifted optimization to avatar model-
ing, allowing for joint optimization of Gaussian parame-
ters and mesh embeddings for accurate reconstruction.

• We demonstrate the capability of real-time rendering and
adaptability to creating diverse avatars through compre-
hensive evaluation and a Unity implementation.

2. Related Work

Mesh-based avatar. The rise of free-viewpoint video in se-
quences of textured meshes has shown the expressiveness of
detailed texture atlas along with as few as 10k triangles [11].
Many efforts [18, 20] have been put into extending this line
of work to build controllable avatars. With the help of human
shape models with strong prior [6, 25, 28, 33] that unwrap
to a unified UV space, texture atlas can be obtained by 2D
image generation supervised through differentiable render-
ing [31, 43]. Such prior models provide consistency across
large motions and can be recovered from monocular videos
or even a single image. To cope with the shape details of
identities and clothes, CAPE [30] predicts displacements on
the vertices with pose-conditioned VAE. Due to the limita-
tion of the base model to topological changes, some treat
the textured mesh as input conditions [31, 36] for image
rendering, while others resort to implicit representations of
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Figure 2. The pipeline of our method. SplattingAvatar learns 3D Gaussians with trainable embedding on the canonical mesh. The motion
and deformation of the mesh explicitly bring the Gaussians to the posed space for differentiable rasterization. Both the Gaussians and
embedding parameters are optimized during training. The position µ is the barycentric point P plus a displacement d along the interpolated
normal vector n. Pose-dependent quaternion and scaling (δq, δs) and pose-invariant quaternion, scaling, opacity, and color (q, s, o, c)
together define the properties of the Gaussians.

the mesh [8, 9, 20, 39], color [16, 20, 39], or materials [4].
Implicit neural avatar. To achieve convincing rendering
beyond the limitation of triangle mesh, especially on the
hair, glasses, and clothes, some recent works [3, 16, 21,
26, 34, 35, 44, 47, 53] focus on constructing NeRF in the
canonical space (usually T-pose of SMPL [28] or neutral
expression of FLAME [25]) and conduct volume rendering
at the posed space. The required backward tracing from pose
to canonical is non-trivial and raises an ambiguity issue. Ex-
isting works propose to adopt pose conditioned inverse LBS
field [17, 34] or to optimize a root-finding loop with mul-
tiple initialization [8, 9, 21]. The increased computational
load upon volume rendering prohibits the potential real-time
applications.

PointAvatar [51], with explicit point primitives, takes
advantage of forward rasterization that only requires non-
ambiguous forward deformation from canonical to pose,
producing photo-realistic appearance and detailed challeng-
ing geometries such as hair and glasses. In transforming to
Gaussian Splatting, we further increase the efficiency and
compatibility with our mesh embedding mechanism instead
of the LBS-based deformation field and achieve two magni-
tude faster rendering speed with on-par quality.
Hybrid avatar representation. First attempts have been pro-
posed to disentangle human avatar modeling into separate
parts with varying properties. AvatarRex [52] learns disen-
tangled models for face, body, and hands. SCARF [13] and
DELTA [14] propose hybrid modeling with textured mesh
for body, and NeRF for hair and clothing. In contrast, our
method handles the disentanglement in terms of motion and
appearance to explicit mesh geometry and implicit Gaussian
Splatting rendering. Different from existing works [3, 20]
that attach features to fixed locations on mesh like mesh

vertices, our trainable embedding enables the Gaussians to
optimize their locations on mesh and distribute unevenly
according to the texture complexity.

3. Method

Overview. Given a sequence of monocular images, each with
a registered mesh template, i.e., the deformed mesh of SMPL-
X [33] or FLAME [25], we train a hybrid representation
of human avatar as 3D Gaussians [23] embedded on the
canonical mesh. The Gaussians, parameterized by position,
rotation, scale, color, and opacity, are semi-transparent 3D
particles that render into camera views through splatting-
based rasterization.

Each 3D Gaussian is embedded on one triangle of the
canonical mesh in its local (u, v, d) coordinates. The em-
bedding directly defines the position of the Gaussians in
both canonical and posed space. Other than position, each
Gaussian has its own parameters of rotation, scaling, color,
and opacity. With the mesh deformed by animation, the em-
bedding also provides additional rotation and scaling upon
each Gaussian. The additional pose-dependent rotation is
defined by barycentric interpolated per-vertex quaternion
while the additional scaling is defined by the area change of
the embedded triangle.

During optimization, the Gaussian parameters and the
embedding parameters are updated simultaneously. When
the update of (u, v) moves the embedding across the trian-
gle boundary, the barycentric update is re-expressed in the
neighboring triangle as if the Gaussian is walking on the
mesh. To support embedding, we adapt the clone and split
scheme of 3D Gaussians [23] to better suit our needs.
Embedding on mesh. Inspired by the Phong shading in
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computer graphics, Phong surface [38] defines the position
and normal of a point inside a triangle. For the point P on
triangle k with barycentric coordinate (u, v), its position
and normal is a linear interpolation of the triangle’s vertices
{V1, V2, V3} and per-vertex normals {n1,n2,n3}:

P = V(k, u, v) = u ∗ V1 + v ∗ V2 + (1− u− v) ∗ V3 (1)

n = N (k, u, v) = u ∗n1 + v ∗n2 +(1− u− v) ∗n3 (2)

where V maps triangle index k and barycentric coordinates
(u, v) to a point on the mesh and N the interpolated normal.

We define the position of a Gaussian, i.e., the mean µ, by
a displacement d along the interpolated normal vector:

µ = P + d ∗ n (3)

Embedding E = {k, u, v, d} approximates a first-order con-
tinuous space around the mesh surface.

As proposed by Zielonka et al. [53], for the corresponding
triangle in the canonical and posed space at frame t we
compute the matrix {Rcano, Rpose} based on the triangle’s
tangent, bitangent, and normal to track the triangle rotation
from canonical to pose, noted that the notation t is skipped.
The rotation matrix is then converted to a quaternion, and
we calculate the per-vertex quaternion qV by area-weighted
average from surrounding neighbor triangles:

Rk = RcanoR
−1
pose (4)

qV =

∑
k∈ΩV

Akqk∑
k∈ΩV

Ak
(5)

where ΩV is the neighbor triangles of vertex V , Ak and qk
are the triangle’s area and quaternion respectively. For an
embedding Ei with quaternions {q1, q2, q3} calculated on
the corresponding triangle vertices at frame t, the barycen-
tric interpolated rotation δqi,t is multiplied to the canonical
rotation qi of the Gaussian in the canonical space:

δqi,t = u ∗ q1 + v ∗ q2 + (1− u− v) ∗ q3 (6)

qi,t = δqi,t ∗ qi (7)

The same applies to scaling where the area change of the
embedded triangle is used to represent the scaling caused
by deformation: si,t = (Apose/Acano)si. While the original
implementation of Gaussian Splatting [23] represents color
in view-dependent spherical harmonics, we choose to turn it
off for simplicity [29].

We perform initialization by randomly selecting 10k pairs
of triangle indices and barycentric coordinates on the canoni-
cal mesh. We set the barycentric coordinates to be the current
(u, v) of embeddings and initialize all the d to be zero. With
the position of the Gaussians calculated from the embed-
dings, we initialize other properties of the Gaussians accord-
ing to their original definitions [23]. Initially, the Gaussians

100 iterations 1000 iterations 30000 iterations

10000 Gaussians 26849 Gaussians 266078 Gaussians

Figure 3. The development of Gaussian embeddings on mesh.
Each line segment indicates the position of one Gaussian displaced
from its embedding point on mesh. Gaussians for off-surface ge-
ometries like the hair have positive displacements while others turn
to have negative displacements because when the mesh surface is
correctly aligned to the geometry like in the facial area, the means
for the Gaussians will be inside the mesh.

are positioned on the surface of the mesh. With the training
proceeds with more poses, the embeddings generally bring
the Gaussians to approximate the actual geometry and den-
sify in the regions with rich texture. Figure 3 illustrates the
development of the embeddings.
Differentiable rendering of Gaussian Splatting. With the
position, rotation, and scaling of the Gaussians updated by
the mesh deformation at frame t, we perform differentiable
Gaussian rendering [23] to the observed camera view(s).
The Gaussian in space is defined by its mean µ and a 3D
covariance matrix Σ.

Gi,t(x) = e−
1
2 (x)

TΣ−1
i,t (x) (8)

Σi,t = Ri,tSi,tS
T
i,tR

T
i,t (9)

where Ri,t is the rotation matrix constructed from qi,t, and
Si,t the scaling matrix from si,t. Given the world-to-camera
view matrix W and the Jacobian J of the point projection
matrix. The influence of the Gaussian is splatted to 2D [54]:

Σ′ = JWΣWTJT (10)

The image formation of Gaussian Splatting is akin to NeRF,
where the same volume rendering formula is applied to the
blending from near to far. The color C of a pixel rendered
by N Gaussians is given by a series of α-blending:

C =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj) (11)

with αi evaluated from the 2D covariance, and an opacity in
logit oi with sigm() being the standard sigmoid function:

αi(P ) = sigm(oi) exp(−
1

2
(P−µi)(Σi)

−1(P−µi)) (12)

The Equation 11 is implemented in CUDA with a for
loop for each pixel, while in our Unity implementation, each
Gaussian is drawn by a front-parallel Quad primitive based
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on the projection and 2D covariance. We resort to the stan-
dard rasterization pipeline of the rendering engine to enable
α-blending with these semi-transparent Gaussians.

Due to limited viewing angle and pose variations from
monocular video, we propose a scaling regularization term
to prevent Gaussians from growing long and thin. A random
background color is generated every iteration to mix with
the rendered image I and ground truth image Igt, providing
important cues for the silhouette. The photometric loss is the
sum of L1 with perceptual loss [49].

L = L1 + λlLlpips + λsLscaling (13)

Lscaling(i) =

{
|ŝi|, ŝi > max(Ts, Tr ši)
0, otherwise

(14)

With si ∈ R3 being the scaling of a Gaussian, ŝi and ši
are the maximum and minimum scaling values respectively.
The scaling regularization is posed on ŝi when it is both long
(larger than Ts) and thin (larger than Tr times ši). Please see
Section 4.3 for an ablation study on the regularization term.
Walking on a triangle mesh. The notion Lifted Optimiza-
tion arises in the model-point registration for hand track-
ing [38, 40, 41] in contrast to Iterative Closest Point (ICP),
where the solve for model pose and correspondences are
lifted to be simultaneous. We extend this notion to our avatar
training, where the properties of the Gaussians and the train-
able embeddings are optimized simultaneously. The barycen-
tric coordinate of a point P is (k, u, v) defined within trian-
gle k. When the learned update Q = (k, u, v) + (δu, δv) is
outside triangle k, we find the intersection P ′ on the shared
edge of the adjacent triangle k′ and re-express the remaining
update in k′ as Q′ = P ′ + (δu′, δv′). Because the barycen-
tric coordinates are agnostic to the triangle shape, without
loss of generality, the re-expression is conducted by concep-
tually treating two adjacent triangles as right triangles with
the intersection on the hypotenuse. The update is iteratively
re-expressed until it ends inside the final triangle. We show
the re-expression process in Figure 4. The detailed steps are
presented in Algorithm 1. Noted that we omit the conceptual
re-ordering of the vertices.
Optimization. We use Adam to optimize the Gaussian pa-
rameters and the embedding parameters. The original learn-
ing rate attenuation on position [23] is instead applied to the
embedding parameters. We record the current barycentric
(u, v) and optimize for (δu, δv, d). The triangle walking in
Algorithm 1 is implemented as a pybind11 module in C++.
When an embedding is being transferred to another triangle,
we reset its corresponding optimizer state of the (δu, δv, d).

The densification process [23] plays an important role in
allocating more Gaussians to where in need. In the clone
and prune process, the embedding parameters are copied
or deleted in the same way as Gaussian parameters. In the
split process, when a new position µ̂ is sampled from the
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Figure 4. Walking on triangles for embedding update. a) The
recursion process of walking on a triangle mesh. b) The update
P + δ starting from triangle CAB is re-expressed as P ′ + δ′ in
triangle DBA, and c) re-expressed again in EDA. The re-expression
between two triangles is conducted by conceptually treating them
as two right triangles adjacent to each other on the hypotenuse.

Algorithm 1 Walking on triangles
Input: k, u, v, δu, δv
Output: k̂, û, v̂

function WALKONTRIANGLES(k, u, v, δu, δv)
P ← (u, v)
Q← (u+ δu, v + δv)
if Q is inside triangle then

Return (k,Q.u,Q.v)
end if
Intersect P-Q with hypotenuse* on (u′, v′)

▷ *reorder vertices if needed
δu′ ← δu− (u′ − u)
δv′ ← δv − (v′ − v)
Return ReExpress(k, u′, v′, δu′, δv′)

end function
function REEXPRESS(k, u′, v′, δu′, δv′)

k̂ ← adjacent of k
û← 1− u′, v̂ ← 1− v′

δû← −δu′, δv̂ ← −δv′
Return WalkOnTriangles(k̂, û, v̂, δû, δv̂)

end function
(k̂, û, v̂)←WalkOnTriangles(k, u, v, δu, δv)

Gaussian, we solve a mini problem with triangle walking to
find the new embedding:

Ê = argmin
k,u,v,d

∥V(k, u, v) + d ∗ N (k, u, v)− µ̂∥22 (15)

Unity implementation for mobile device. With maximum
compatibility in mind, we made SplattingAvatar solely rely
on the warped mesh. Before exporting to Unity, we uploaded
the canonical mesh in .obj format to Mixamo [1] for auto-
rigging. In total, we exported one .ply file of the Gaussians,
one .json file describing the embedding, and one .fbx file
from Mixamo to Unity. Note that the .fbx file can be rigged
by any other software for customized needs, as long as the
triangle order is maintained.
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PointAvatar INSTA NHAOurs+FLAMEGround Truth Ours+NHA

Figure 5. Qualitative comparison on head avatars. SplattingAvatar produces photorealistic rendering for avatars with high-quality details
especially in the eye and hair regions. Even the light reflection on the glasses is well reconstructed. Both PointAvatar [51] and NHA [16] can
reconstruct good geometries but the rendering quality is limited by their underlying representations, i.e., points and texture atlas respectively.
Compared to INSTA [53], our trainable embedding scheme produces better quality for off-surface geometries, especially for the glasses. The
green arrows highlight where our results have better consistency with Ground Truth, while the red arrows point to where other methods show
significant artifacts or noise. Please see the supplemental materials for illustrations of the error map.

We implemented the Gaussian renderer in Unity’s com-
pute shaders, starting from sorting all Gaussians by the
z-axis in camera coordinates from near to far. Based on
the calculated 2D covariance Σ′, one front-parallel quad
primitive is drawn for every visible Gaussian centered at
its position. This one-primitive-one-Gaussian strategy is im-
portant for the game engine to properly handle the occlu-
sion of other regular objects. For every pixel to draw in the
fragment shader, our implementation emits color with al-
pha pre-multiplication and sets the blend function to (ONE,
ONE_MINUS_SRC_ALPHA). Our Unity program achieves a
high performance of over 300 FPS on a modern GPU while
maintaining a steady 30 FPS on an iPhone 13.

4. Experiments

To demonstrate the effectiveness of SplattingAvatar, we com-
pared it with state-of-the-art (SoTA) methods in two different
types of datasets for head and full-body avatars.

Method PSNR↑ SSIM↑ LPIPS↓
NHA [16] 20.29 0.883 0.145
INSTA [53] 26.42 0.924 0.080
PointAvatar [51] 27.84 0.913 0.067

Ours+FLAME 28.19 0.931 0.063
Ours+NHA 28.86 0.931 0.060

Table 1. Quantitative comparison on head avatars. Both vari-
ations of our method outperform existing methods in terms of
average photometric errors. With detailed meshes from NHA [16],
Ours+NHA performs the best based on the metrics. However, we
observe better visual quality with Ours+FLAME in the inner re-
gions of the rendered image.

4.1. Datasets

Monocular video for head avatar. Taking a single monocu-
lar video to construct a head avatar for the given subject, our
method takes as input images, masks, camera parameters,
and tracked FLAME meshes, denoting Ours+FLAME. We
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Figure 6. Qualitative comparison on PeopleSnapshot [2]. We show the results on PeopleSnapshot (columns 2–4) and novel pose animation
(columns 5–6). SplattingAvatar produces photorealistic rendering for full-body avatars, especially in the facial area, and captures thin
structures like the accessory on the wrist.

male-3-casual male-4-casual female-3-casual female-4-casual
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Anim-NeRF [7] 29.37 0.970 0.017 28.37 0.960 0.027 28.91 0.974 0.022 28.90 0.968 0.017
InstantAvatar [21] 30.91 0.977 0.022 29.77 0.980 0.025 29.73 0.975 0.025 30.92 0.977 0.021

Ours 33.01 0.982 0.020 30.99 0.982 0.029 30.81 0.978 0.028 32.57 0.981 0.018

Table 2. Quantitative comparison on PeopleSnapshot. Compared to two SoTA methods, we achieve significant improvements in pixel-wise
quality with PSNR and SSIM. All three methods achieve good perceptual quality in terms of LPIPS where the metrics are close.

evaluated our approach with several SoTA methods on a com-
bined dataset from NHA [16], NerFace [15], INSTA [53]
and PointAvatar [51], including 10 subjects covering dif-
ferent videos captured with DSLR, smartphones and from
the Internet. The pre-processing pipeline of IMavatar [50]
and INSTA [53] was altered to apply DECA [12] for face
tracking, RVM [37] for segmentation, and BisenetV2 [46]
for face parsing. For each video, the last 350 frames were
used as testing samples. Because our method can directly
be animated by the given mesh, we further unleashed its po-
tential by training and testing on the generated meshes from
NHA [16] which have more geometry details. This variation
is referred to as Ours+NHA.

PeopleSnapshot. We conducted a quantitative evaluation of
the rendering quality of full-body avatars on the PeopleSnap-
shot [2] dataset, which captures the human subjects rotating
in A-pose. Following the protocol of InstantAvatar [21], we
used SMPL meshes refined by Anim-NeRF [7]. Our method
demonstrates the generalizability to novel poses through

qualitative analysis in Section 4.2.

4.2. Comparison with SoTA

Head avatar. To evaluate the rendering quality of the
learned avatars, we animated SplattingAvatar with the regis-
tered meshes of testing images. For Ours+NHA, we trained
NHA [16] on the training set and extracted the final meshes
for both the training and testing images, which were further
used for the training and testing of our method respectively.

We conducted a comparative analysis of SplattingAvatar
against INSTA [53], PointAvatar [51], and NHA [16]. As
depicted in Figure 5, our method achieves superior quality
in terms of improved details in the eye and hair regions, and
even being able to capture the light reflection on the glasses.
For Ours+FLAME, though the off-surface geometries like
hair and glasses are not fully represented by meshes, our
method can handle the rendering decently because the em-
beddings are optimized to find correct motions from nearby
triangles. Please see Table 1 for quantitative evaluations with
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PSNR, SSIM and LPIPS.
Full-body avatar. We made a comparison to InstantA-
vatar [21] and Anim-NeRF [7] on PeopleSnapshot. For In-
stantAvatar [21], a complete training was performed for 200
epochs as suggested in the most recent version of the au-
thor’s code. Image quality metrics in Table 2 demonstrate
the effectiveness of our method in terms of the lowest pixel-
wise errors. We qualitatively show the comparison of render-
ing quality of testing images in Figure 6, together with the
demonstration of generalizability to novel poses. Our repre-
sentation is friendly to thin structures like the accessory on
the wrist. Our approach produced better quality overall and
especially in the facial area compared to InstantAvatar [21],
but slightly more artifacts under the shoulder due to very
limited pose variations in the training set. We believe this
can be much improved with more training poses.

4.3. Ablation Study

Trainable embedding. The key component of our method
is the trainable embedding on the mesh. We conducted an
ablation experiment by replacing it with fixed embedding
on mesh and a trainable local shift ∆x ∈ R3 per Gaussian.
Without trainable embedding, the Gaussians encountered
difficulties in following the mesh correctly. The right column
of Figure 7 shows the irregular rendering artifacts without
trainable embedding.
Regularization. In the optimization process of Gaussian
Splatting, some Gaussians turn to become long and thin,
generating artifacts when rendered into novel poses. We
show the results without the scaling regularization in the
middle column of Figure 7.

w/o scaling termOurs w/o trainable embedding

Figure 7. Ablation study. Without the scaling regularization term,
Gaussians that are long and thin cause needle-like artifacts. Without
trainable embedding, Gaussians do not follow the movement of the
mesh tightly, leading to irregular rendering results. The applica-
tion of our trainable embedding and the scaling term successfully
removes most of the artifacts when rendered into novel poses.

4.4. Discussion

Discussion on driving mesh. Considering efficiency, com-
patibility, and portability, SplattingAvatar is designed to
tightly rely on the motion and surface deformation of the
underlying mesh. In the comparison between Ours+FLAME
and Ours+NHA, we observe that the driving mesh should
focus on the motion instead of fully reconstructing the exact
geometry. In Figure 8 we show that when the mesh with
vertex offsets from NHA [16] is applied, the detailed surface
deformation improves the generalizability of SplattingAvatar
to large poses. However, in the second and third row of
Figure 5, the mesh from FLAME that captures the correct
motion of the glasses rather than the shape is driving the best
rendering quality of SplattingAvatar. To perform textured
mesh rendering, the mesh of NHA [16] is seamed in the
mouth region and deformed to fit the shape of the glasses,
yet both being unhelpful to the quality of Ours+NHA.
Limitations and future work. As discussed above, our
method depends on the motion representation ability of the
driving mesh. With current FLAME and SMPL-X models,
we do not have separate motion representations for clothes
and hair. We believe SplattingAvatar can support future
works on human avatars with disentangled mesh representa-
tions, e.g., separate meshes for clothes and hair stands.

Ours+NHA Ours+FLAME

Figure 8. Comparison between Ours+FLAME and Ours+NHA.
The better aligned mesh from NHA [16] improves the generaliz-
ability of SplattingAvatar to large pose variations.

5. Conclusion

In this paper, we have proposed a hybrid representation for
human avatar modeling featuring Gaussian Splatting with
trainable embeddings on a mesh. We extend lifted optimiza-
tion to simultaneously optimize the parameters of the Gaus-
sians and their embeddings. Our method leverages the advan-
tages of the explicit motion representation with a mesh and
implicit rendering capability of Gaussian Splatting. Com-
pared with SoTA methods, our approach achieves the best
rendering quality for both head and full-body avatars re-
constructed from monocular videos and runs at real-time
frame rates on a mobile device. Our method lays a founda-
tion for future work in Gaussian Splatting manipulation with
mesh-based motion control.
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SplattingAvatar: Realistic Real-Time Human Avatars
with Mesh-Embedded Gaussian Splatting

Supplementary Material

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure A1. Dataset for head avatar. We collected 10 subjects from publicly available datasets for the evaluation of head avatar modeling,
with (a–e) from INSTA [53], (f) from NHA [16], (g, h) from IMAvatar [50], and (i, j) from NerFace [15]. We show the rendering results
on the testing samples. Our method captures high quality details, for example the light in the eyes, the texture of the hair, and off-surface
geometry like the glasses.

In this supplemental document, we elaborate details about
the dataset for head avatar in Sec. A, implementation de-
tails in Sec. B, and additional experimental comparisons in
Sec. C.

A. Dataset

In Figure A1, we show the 10 evaluated subjects that we
collected from publicly available datasets, i.e., INSTA [53],
NHA [16], IMAvatar [50], and NerFace [15]. The rendering
results are from Ours+FLAME. Our method show high qual-
ity rendering capability with high fidelity details especially
in the eyes, hair, and glasses.

B. Implementation Details

Training. We chose λl = 0.01, λs = 1.0, Ts = 10.0 and
Tr = 0.008 all through the experiments. We followed the
original implementation of 3D Gaussian Splatting [23] to
set the total number of iterations to 30,000 for each subject.
Starting from iteration 600, the densify and prune process

were conducted every 100 iterations. Every 3000 iterations,
the opacity of all the Gaussians were reset to zero. We find
this opacity-reset step effective in removing redundant Gaus-
sians. The densify, prune, and opacity-reset process stop at
iteration 15,000.

Unity rendering. As described in the main paper, in our
Unity implementation, we draw one quad primitive for each
Gaussian. The quad primitives are illustrated in Figure A2.
Benefiting from our trainable embedding scheme, the embed-
dings of the Gaussians were efficiently ported to compute
shaders for the motion control of the Gaussians, leading to
an animatable avatar running over 300 FPS on an NVIDIA
RTX 3090 GPU.

Running time. With our pybind11 implementation, the walk-
ing on triangle step takes around 3.5 ms. We conduct this
step after densifying and pruning. For comparison, densify-
clone takes 2.5 ms and densify-split takes 6 ms.

The whole optimization follows the conversion of the
original Gaussian Splatting that the number of total iterations
is 30000, and the densify, prune, and walking on triangle
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(a) (b) (c) (d)

Figure A2. Gaussian Splatting rendering in Unity. Our Unity implementation of Gaussian Splatting is conducted by drawing one quad
primitive for each Gaussian. We show (a) the driving mesh for the current pose, (b) the quad primitive for each Gaussian, (c) the 2D
covariance of the Gaussians illustrated by eclipses, and finally (d) the rendering result with α-blending.

INSTADriving Mesh Ours

Figure A3. Comparison with INSTA in the eye region. IN-
STA [53] propose to find the nearest triangle when deforming
a point in the posed space to the canonical space, causing unstable
sampling in the canonical space and strong noise when dealing with
complex geometries like the eye. Our embeddings-based motion
control of the Gaussians leads to smooth rendering results.

steps are performed every 100 iterations.

C. Additional Results
Comparison with FLARE. FLARE [4] is a mesh-based
avatar modeling approach focusing on relightable avatar re-
constructed from monocular videos, which is published very
recently. In Table A1, we show comparison with FLARE
on our head avatar dataset. FLARE [4] reconstruct accurate
geometry and materials of the avatar that our method does
not focus on, while the strength of our method is the signifi-
cant improvement in photometric quality and efficiency in
rendering. Qualitative comparison is shown in Figure A4.
Non-ambiguous motion control. One of the key benefits
of our method is the non-ambiguous motion control compar-
ing to the backward tracing process of NeRF-based avatar
rendering. INSTA [53] propose to simplify this step by find-

FLAREOurs+FLAMEGround Truth

Figure A4. Comparison with FLARE. We show qualitative com-
parison with FLARE [4].

ing the nearest triangle for the deformation from the posed
space to the canonical space. We show in Figure A3 that this
simplification causes significantly more noise when dealing
with complex geometries like in the eye region.
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PointAvatar INSTA NHAOurs+FLAMEGround Truth Ours+NHA

𝑙1

0.0
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Figure A5. Heatmaps of l1 error. We show the heatmaps illustrating the l1 RGB distance of the rendered images. Our methods and
INSTA [53] show overall better quality. The rendering quality of PointAvatar [51] and NHA [16] are limited by their point-based and
mesh-based representations respectively.

Method PSNR↑ SSIM↑ LPIPS↓
FLARE [4] 23.87 0.893 0.129

Ours+FLAME 28.19 0.931 0.063
Ours+NHA 28.86 0.931 0.060

Table A1. Quantitative comparison with FLARE. We show
comparison with the recently published avatar modeling method
FLARE [4] on our head avatar dataset.

Error map. Due to the limitation of segmentation and head
tracking in the pre-processing pipeline. The metrics of pho-
tometric error in the main paper was affected by the error

mostly in the neck area. We show in Figure A5 the error maps
of the evaluated methods. Our methods and INSTA [53] show
overall better quality. PointAvatar [51] and NHA [16] both
focus on relightable modeling with explicit shape represen-
tations, which compromise their performance in terms of
pixel-wise metrics.
Ablation on walking on triangle. We firstly conducted an
ablation study on head avatar bala where we disabled the
walking on triangle mechanism and clipped the UV values to
prevent the Gaussians from moving beyond their correspond-
ing triangles. In addition to the performance drop as listed
in Table A2, the Gaussians tend to stick and pile up on the
boundaries of the mesh triangles as shown in Figure A6. The
performance drop was more significant in the second exper-
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Method PSNR↑ SSIM↑ LPIPS↓

bala w/o walking 29.91 0.933 0.070
w/ walking 30.04 0.938 0.062

male-3-casual w/o walking 32.48 0.979 0.024
w/ walking 33.01 0.982 0.020

Table A2. Quantitative ablation on walking on triangle.

(a) w/ walking on triangle. (b) w/o walking on triangle.

bala bala
male-3-casual novel pose

Figure A6. Ablation on walking on triangle. Disabling walking
on triangle leads the Gaussians to stick and pile up on triangle
boundaries, and cause artifacts when animated by novel poses.

iment on full-body avatar male-3-casual. Especially when
animated by novel poses, turning off walking-on-triangle
resulted in noticeable artifacts.
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