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ABSTRACT 
Although there are clear benefits to automatic image 
capture services by wearable devices, image capture 
sometimes happens in sensitive spaces where camera use is 
not appropriate. In this paper, we tackle this problem by 
focusing on detecting when the user of a wearable device is 
located in a specific type of private space—the public 
restroom—so that the image capture can be disabled. We 
present an infrastructure-independent method that uses just 
the microphone and the speaker on a commodity mobile 
phone. Our method actively probes the environment by 
playing a 0.1 seconds sine wave sweep sound and then 
analyzes the impulse response (IR) by extracting MFCCs 
features. These features are then used to train an SVM 
model. Our evaluation results show that we can train a 
general restroom model which is able to recognize new 
restrooms. We demonstrate that this approach works on 
different phone hardware. Furthermore, the volume levels, 
occupancy and presence of other sounds do not affect 
recognition in significant ways. We discuss three types of 
errors that the prediction model has and evaluate two 
proposed smoothing algorithms for improving recognition. 
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INTRODUCTION 
Wearable cameras produce personal image-based records 
which can be used in a variety of ways. For example, 
researchers have used such records to investigate health 
behaviors (such as exercise and diet [9, 10]), help people 
with memory loss recall past events [8], increase parental 
understanding of the needs of children with autism [15, 18], 
and improve everyday memory and social skills for children 
with disabilities [1]. Although there are demonstrated 

benefits to wearing an always-on and automatically 
recording personal camera, there are also documented 
concerns of recording others, particularly in sensitive 
spaces [1, 3, 4, 9, 10, 11]. As a result, many researchers and 
users have expressed a need for a mechanism to temporarily 
disable capture. However, even when manual “privacy 
buttons exist and wearable cameras can be removed, it is 
not uncommon for participants to report that they forgot 
they were wearing the unit. Therefore, the participant 
inadvertently might collect inappropriate images, such as 
going to the bathroom” [11]. “With thousands of images 
automatically recorded every day, … [the user] only deletes 
unwanted images if he comes across them, as searching for 
them would take too much time” [4]. Therefore, how to turn 
off wearable cameras automatically in sensitive or private 
spaces is an important research problem.  

We tackle this problem by exploring how to detect a 
specific type of private space where image recording is 
socially inappropriate—the public restroom. Many 
researchers have identified the restroom as a specific type 
of space where they want to suspend capture (e.g., [1, 3, 4, 
11]). We focus on public restrooms, in particular, because 
of the potential for others to be recorded in the captured 
images there. This problem is challenging for two reasons. 
First, infrastructure-dependent indoor localization 
approaches (e.g., cellular, WiFi, and visible light) depend 
on the infrastructure coverage and floor maps to identify a 
restroom’s location. Infrastructure-independent indoor 
localization approaches (e.g., inertial sensors on phone) 
would still require floor maps in order to reason and 
determine if the user’s location is inside a restroom. 
However, such localization methods fail when the user is 
outside of an infrastructure’s coverage or at a location 
where floor maps have not yet been developed. 
Alternatively, video or image based approaches can be 
employed to detect restrooms [17, 19, 20, 25, 26]. 
Unfortunately, vision based techniques can sometimes miss 
signage located immediately outside the space [26]. These 
methods still can be used inside the space to detect the 
presence of objects, construction material, and fixtures 
commonly found in restrooms to reason that must be where 
the user is located (e.g., [19]); however, this violates the 
original motivation of not wanting recording to happen 
there in the first place. Furthermore, recording must still be 
on to determine when the user has left the space in order to 
resume the archiving of captured images. 
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against only using the environment sound without a sweep. 
Models can be developed on different phones to classify 
new restrooms with a weighted F-Measure of 0.92~0.98. 
Occupancy, the presence of sounds, and the volume levels 
of the sweep do not affect the model’s performance in 
significant ways. We discuss three types of errors that affect 
the prediction model and propose temporal smoothing 
algorithms to improve the prediction accuracy.  
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