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This work focuses on an active topic in the HCI community, namely tutorial creation by demonstration. We present a novel tool
named SmartRecorder that facilitates people, without video editing skills, creating video tutorials for smartphone interaction tasks. As
automatic interaction trace extraction is a key component to tutorial generation, we seek to tackle the challenges of automatically
extracting user interaction traces on smartphones from screencasts. Uniquely, with respect to prior research in this field, we combine
computer vision techniques with IMU-based sensing algorithms, and the technical evaluation results show the importance of
smartphone IMU data in improving system performance. With the extracted key information of each step, SmartRecorder generates
instructional content initially and provides tutorial creators with a tutorial refinement editor designed based on a high recall (99.38%)
of key steps to revise the initial instructional content. Finally, SmartRecorder generates video tutorials based on refined instructional
content. The results of the user study demonstrate that SmartRecorder allows non-experts to create smartphone usage video tutorials
with less time and higher satisfaction from recipients.
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1 INTRODUCTION

Video tutorials for smartphone interaction tasks, abundant on websites like Youtube, are essential to help users tackle
the challenges that multiple smartphone functions bring. However, creating video tutorials requires video editing skills,
which challenges non-experts [7]. Furthermore, making tutorials manually is also time-consuming because of the
variety of smartphone interfaces and interaction tasks. We seek to design an automatic system with minimal human
intervention to lower the human effort when creating video tutorials about smartphone interaction tasks so that people
without video editing skills can still make smartphone usage video tutorials easily and efficiently.

Creating video tutorials with professional software (e.g., Adobe Premiere, iMovie) is challenging for non-experts [6,
7, 21]. To lower the efforts for tutorial creation, some related works (e.g., MixT [10]) focus on extracting user steps from
screencasts and generating instructional content automatically to liberate tutorial creators from editing instructional
content. However, existing methods for extracting interaction traces have limitations that restrict their practical use on
smartphones. For example, some works obtain touch events from touchscreen capacity signal [41] or AccesssibilityNodes
of Android Application Framework [39] on a smartphone so that the explicit interaction events obtained from the
operating system can assist screencast analysis and tutorial generation. However, obtaining capacity signals is impossible
for off-the-shelf devices. Granting the rights for Accessibility API can take a few steps and brings extra trouble to tutorial
creators. Additionally, Accessibility API allows the third party to inject actions to execute auto-clicks or other simulated
gestures to control the users’ device, which brings high privacy risks to users. We argue that using detailed data from
the operating system framework is not the only way to accomplish automatic user step extraction. For vision-based
methods towards extracting user actions from video recordings, existing approaches rely on tracking or detecting salient
features in the video like mouse cursor [1, 10, 27], touch indicator [4, 5], and users’ hands or fingers [11]. However,
these features are not standard in smartphone screencasts. Using pure vision-based methods to deal with screencasts
without salient features is challenging because it is hard to distinguish which screen animation is caused by users and
which is caused by the operating system (e.g., pop-up advertisements and notifications).

To overcome the above challenges, we leverage smartphone IMU sensors, which are pervasive and accessible on
off-the-shelf smartphones. This idea is enlightened by TapNet [18], which shows the potential of using smartphone
IMU to accomplish off-screen taping input. In addition, obtaining signals from IMU sensors is a low-risk activity
and requires no extra permission, which is safer and more convenient for users. We extend the method and scenario
of TapNet [18]. In this work, we collect new dataset of IMU signals and build CNN models to recognize the touch
position and multiple gesture types. Moreover, we combine the screencast of an interaction task with the data from the
smartphone IMU sensors to improve the system performance of extracting interaction trace on the smartphone, which
facilitates instructional content generation.

Based on this technique, we propose SmartRecorder, a novel tool that generates video tutorials of smartphone tasks
with machine intelligence and minimal human involvement. It consists of two modules in the front end: Screencast
Module and Tutorial Refinement Editor, and two in the back end: Input Step Analyzer and Tutorial Generator. The
Screencast Module collects the screencast and the IMU data in the demonstration process. With computer vision and
sensing algorithms, Input Step Analyzer analyzes the collected data to extract user actions automatically and calculates
the tutorial metadata (keyframe, gesture, touch position, and instructional text) of each user input step. SmartRecorder
also offers tutorial creators a simple editor on smartphones to refine the automatically generated tutorial metadata easily
and efficiently. The tutorial Generator of SmartRecorder can generate the video tutorial of the target task according

2



SmartRecorder ACM Conference on Intelligent User Interfaces, 978-1-4503-XXXX-X/18/06

to the tutorial metadata. SmartRecorder reduces human work (by involving machine automation) and ensures the
correctness of the tutorial content with the Tutorial Refinement Editor.

We evaluated the efficiency and effectiveness of SmartRecorder through a 2-phase user study. In phase 1, we compared
the efficiency of creating video tutorials with and without using SmartRecorder. The results show that SmartRecorder
facilitates tutorial creators to make a video tutorial efficiently. The time cost of human editing is reduced by 75.62%.
Subjective feedback shows tutorial creators’ satisfaction and willingness to use SmartRecorder. In phase 2, we recruited
18 participants to evaluate the guiding effectiveness of the tutorial generated by SmartRecorder. The quantitative results
show that with the video tutorials created by SmartRecorder, participants had significantly higher task completion
rates and shorter completion time when completing the tasks. Tutorials created by SmartRecorder also received higher
user satisfaction than manually produced tutorials.

We make the following three contributions in the work. 1) We propose the IMU-based technique to extract user
interaction traces from the screencast of smartphone interaction tasks, which addresses the challenges of existing
methods. 2) We apply the above technique to real use and develop SmartRecorder, an IMU-based tutorial creation
by demonstration system, to help non-experts create smartphone usage video tutorials with minimum human effort.
3) Our user studies show that SmartRecorder facilitates non-experts to create video tutorials easily and efficiently;
moreover, these tutorials were able to help users complete tasks more effectively with higher user satisfaction compared
to traditional methods.

2 RELATEDWORKS

We discuss prior research from two aspects: extracting interaction traces from pre-recorded demonstrations and editing
instructional content in video tutorials.

2.1 Extracting Interaction Traces from Pre-recorded Demonstrations

Manually extracting the step-by-step operating information from the demonstration and making a video tutorial
requires high labor cost and time cost [22]. Therefore, technical assistance is needed to reduce the workforce. Extracting
step-by-step information from pre-recorded demonstrations is the key to generating instructional content automatically
and semi-automatically. In the domain of computer software, capturing demonstration workflow from software API is a
classic method to extract step-by-step information for tutorial generation [3, 10, 13, 15, 17, 25] and lead the interaction
between learners and tutorial content [12, 16, 25, 31, 33, 36]. As obtaining the interaction log-data from multiple
third-party mobile applications is impossible, such a method is not applicable on smartphones. There are also some
computer vision (CV) techniques aiming at extracting user actions from demonstrative screencast [1, 4, 5, 10, 27, 42] or
video recording of operation behaviors [11]. However, these techniques rely on tracking and detecting specific features
in the recorded videos, such as mouse cursor [1, 10, 27, 42], touch indicator [4, 5] and users’ fingers [11], while such
features are not common in smartphone screencasts. Using pure vision-based methods to extract each step of user input
from a smartphone screencast is quite challenging because it is difficult to identify which screen animation is caused by
users and which is caused by the operating system. To tackle this challenge, some related works track the metadata of
user input from touchscreen capacity signal [41], and Android debugging bridge (ADB) [40]. However, such methods
require developer permissions and extra devices, which is impractical for regular users with off-the-shelf smartphones.
Another approach is to leverage the Accessibility API provided by the smartphone OS [28, 39, 44]. However, Granting
the rights for Accessibility API can take a few steps and brings extra trouble to tutorial creators. Even if the permissions
are set, some user inputs still cannot be captured, such as interactions with unlabeled UI elements [40]. Additionally,

3



ACM Conference on Intelligent User Interfaces, 978-1-4503-XXXX-X/18/06 Hu et al.

Accessibility API allows the third party to inject actions to execute auto-clicks or other simulated gestures to control
users’ devices [5, 14], which brings high privacy risks to users. Because of this, the Accessibility API of iOS can only
be used by built-in smartphone apps, and third-party apps have no rights to obtain user interaction traces from the
Accessibility API. TapNet [18], which presents the potential of using smartphone IMU to detect different types of "Tap",
inspires us to leverage smartphone IMU to detect the characteristics of user input. As built-in IMU is ubiquitous among
off-the-shelf smartphones and only offers low-level signals with low privacy risk (no need for extra authentication in
system settings), end-users and third parties can benefit from it for safety and convenience. In this work, we use the IMU
channel to improve the performance of the CV channel for extracting user input steps from pre-recorded smartphone
screencasts and generating instructional content accordingly. Our approach differs from TapNet [18] in two ways. First,
TapNet [18] only focuses on tap gesture while ours recognizes six gestures. This is non-trivial as distinguishing two
categories (tap, no tap) and six categories require training different AI models. Second, we quantified the detection
performance of different gestures and present how IMU signals help to recognize different gestures.

2.2 Editing instructional content in video tutorials

Without artificial check and refinement, fully automated approaches for generating tutorials may often cause errors that
are difficult to avoid [2, 10, 44]. Some related works involve authors’ checking and labeling during the demonstration
process to ensure the correctness of the generated instructional content in the interactive tutoring system [24, 41, 43].
However, such methods interrupt the demonstration, so they are less suitable for creating video tutorials that show an
integral process of interaction task completion. In the domain of video editing, related works illustrate that informational
video editing is time-consuming and challenging for non-experts [19]. Professional software (such as iMovie [20] or
Adobe Premiere [37]) offers enough functions for producing various types of videos. At the same time, it brings barriers
to non-experts due to complex work in timeline control, motion arrangement, and frame sequencing [19, 32]. Although
simplified video editing tools have been designed for authoring certain types of videos (such as motion graphics [19]
and marketing videos [9]), they are mainly used for style creation instead of instructional content editing. Some works
propose advanced methods for generating video tutorials from a well-edited markdown-formatted tutorial [8]. Still,
there is a lack of work on simplifying the editing of instructional content in tutorial videos. However, prior works also
enlighten us to leverage markdown scripts for instructional content editing [8] and reduce the editing complexity by
replacing timeline control with automatic key shot selection [19]. In this work, we lower the effort of tutorial creators
by combining automatic instructional content generation with minimum post-refinement. By improving the recall
of automatic user step extraction, the metadata of each step can be fully checked by creators. Creators only need to
delete the redundant steps in candidate steps extracted automatically and refine the static instructional content (e.g.,
instructional text), which liberates the creators from complicated timeline operation and tool usage for video editing.

3 THE IMU-BASED INPUT STEP ANALYZER

We introduce our methods for extracting user input steps from a smartphone screencast of an interaction task and
calculating the key elements of tutorial metadata. As this is a key contribution of this work, we present it in this
separate section. This technique could generally be used in other integrative systems not only restrict to SmartRecorder.
Fig 1 shows the pipeline of this technique. In this section, We firstly define the key elements of a user input step that
constitute the metadata of a tutorial. Next, we present the sub-modules of the Input Step Analyzer. Then we show the
system organization of combining video processing and IMU data processing to extract user input steps and calculate the
tutorial metadata. Finally, we evaluate the performance of the proposed method by comparing the system performance
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Fig. 1. Pipeline of Input Step Analyzer. In the initial processing, the Video Processing Module and IMU Data Processing Module
firstly process the screencast and smartphone IMU data respectively. The Video Processing Module outputs a set of keyframes where
a user input could happen, as well as inter-frame salient regions and optical flow of each keyframe. The IMU Data Processing Module
extracts the timestamp, gesture, and touch position of each user input from the IMU signals. Then the keyframes are processed by
two assistive models: Soft Keyboard Recognition Model and UI Element Detection Model to filter the keyframes, recognize the typing
gesture, and generate candidates of target UI element. These data are combined with other outputs of Video Processing Module and
IMU Data Processing Module to finally generate the metadata of the tutorial steps.

with and without the assistance of IMU data. In the next section, we present how we construct the SmartRecorder based
on this IMU-based Input Step Analyzer.

3.1 Metadata of Tutorial Content

By analyzing some existing step-by-step smartphone usage tutorials, we propose that each tutorial step should include
four metadata to present instructional content. (1) The keyframe in the screencast when the user starts touching. The
keyframe shows the recipient what the key interface looks like. (2) The screen-based gesture (Tap, Long tap, Scroll up,
Scroll down, Scroll left, Scroll right, Typing). We take "Typing" as a gesture because "Typing" is a unit of a step, and
there is no need to divide "Typing" into several Taps. Presenting gesture information helps tutorial recipient understand
what to do with the target UI element in each step. (3) The target UI element’s position shows where to perform the
corresponding gesture. We treat the entire soft keyboard area as the target UI element of "Typing." We also take arbitrary
position in the interface where performing "Scrolls" can lead to screen scrolling as the target position of "Scrolls." (4)
The instructional text which describes what to do in each step is a summary of the other metadata. The metadata is
the source of the tutorial instructional content. Regardless of the visual design, the instructional content of each step
should include these four elements of tutorial metadata.

3.2 Sub-modules of the Input Step Analyzer

The Input Step Analyzer’s function is to calculate each step’s tutorial metadata from the task completion screencast
and its corresponding IMU data. It consists of two primary sub-modules: Video Processing Module (Extracting the
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Fig. 2. Examples of salient regions within inter-frames

keyframes from the screencast when the user starts to touch the screen for input, detecting the regions that display
salient animation within frames, and calculating inter-frame optical flow to indicate the screen movement pattern),
and IMU Data Processing Module (Extracting the timestamp of each user input, recognizing the gesture of each user
input and predicting the finger touch position of each user input, from the IMU Data). The Input Step Analyzer also
contains two assistive models for further extracting the gesture and target UI element of each step: the Soft Keyboard
Recognition Model (Recognizing the typing gesture according to the existence of a soft keyboard) and the UI Element
Detection Model (Detecting the positions of all UI elements from a keyframe for predicting a possible UI element that
the user tap).

3.2.1 Video Processing Module.

Video Splitter. To extract user input steps from a screencast video, we segment the screencast into several short
pieces according to inter-frame difference since a user input can cause a screen animation. We calculate the inter-frame
difference of the screencast thoroughly, filter out tiny and disconnected components and extract the video pieces during
which the salient regions exist within inter-frames. Fig 2 shows the salient regions within inter-frames, which often
contain the target UI elements because the user input often causes the visual animation of UI elements. However,
the salient regions and target UI elements are usually not one-to-one mappings, so we stored all salient regions of a
keyframe for further target UI element prediction. Such segmentation recalls all of the user input steps but includes
some non-user-caused animation which is usually caused by message pop-up, advertisements, and page loading.

Inter-frame Optical Flow Calculator. By calculating the inter-frame optical flow, we extract the movement pattern of
feature points in the extracted short video pieces to predict the direction of the scroll gesture from the displacement
vector of feature points. We use the Lucas-Kanade algorithm [29] to calculate the movement of feature points and
compute the sum of the displacement vector, which contributes to gesture labeling.

Keyframe Filter. As the Video Splitter segments the screencast into several short video pieces, we take the start frame
of each video pieces as a keyframe candidate for a user input. Therefore, we need to filter out redundant frames from
this candidate set. We use optical character recognition (OCR) to extract the text of keyframe candidates and filter out
the loading page by detecting keywords like “loading” and the pages with no words. We also detect the word variation
among frames for further filtration to improve the precision of keyframe extraction. For example, if the words extracted
from the start frame were the same as that of the end frame in a short video piece, we also filter out such frames because
there is no semantic change in this video piece. However, there are still some redundant frames that we need to filter
out, which is one reason for using the IMU channel.

Output of Video Processing Module. The Video Processing Module outputs a set of keyframes which shows the status
of the interface when a screen animation begins. The Video Processing Module’s proposals of keyframes include all
keyframes when the user start a touch input, but also include some keyframes where the animation is not caused
by user input as we have stated before. Together with each keyframe, the the Video Processing Module also outputs
inter-frame salient regions and optical flow.
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Fig. 3. Structure of IMU Processing Module. It includes three models: contact detection model, position prediction model and
gesture recognition model. They share the same model structure but have different shape of each layer. Five types of sensor signals
concatenate together as the input.

3.2.2 IMU Data Processing Module. The IMU Data Processing Module consists of three separate convolutional neural
networks (CNN), one for contact detection, one for touch position prediction, and another for gesture recognition.
We leverage 5 types of sensor signals on the smartphone (signals from 3-axis accelerometer, 3-axis gyroscope, 3-axis
gravity, 3-axis linear acceleration, and 3-axis rotation vector) as the input of these models. Each data point is recorded
with a unique timestamp. We use the contact detection model to extract the timestamp of each input step. For each step,
the other two models will be applied to predict the position of contact and recognize the type of gesture. We present
our work on dataset building and model development.

Dataset. We developed a mobile application to collect data for model training and recruited 11 participants (5 females,
6 females; aged from 20 to 24, M = 22.1, SD = 1.50) from the campus. The participants were asked to use their own
smartphones to participate in this data collection experiment. The experiment consists of seven tasks: Tap, Long tap,
Scroll up, Scroll down, Scroll left, Scroll right, and motions without touching the screen. Participants were asked to hold
the smartphone in the left hand and perform screen-based gestures with the right hand in a sitting position. Considering
the diversity in real use, we reminded participants to perform gestures with different properties by changing the
description on the screen. For Tap and Long Tap, we collected gentle, normal, and strong ones. For Scroll gestures, we
collected normal, short, long, fast, and slow ones. Since Tap occurs more frequently than other gestures in daily use,
we collected more Tap data (about three times compared to others). For position prediction, we divided the screen
into 3x2 grids and asked participants to tap the same number of times in each grid. Motions without touching the
screen were also collected as negative samples, including holding the phone, touching the back and sides of the phone,
shaking and flipping the phone, and so on. To avoid fatigue, participants could take a break every ten minutes. The
whole experiment lasted for half an hour.
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We collected 5 types of sensor signals on the mobile phone (signals from 3-axis accelerometer, 3-axis gyroscope,
3-axis gravity, 3-axis linear acceleration, and 3-axis rotation vector). Since the shortest sampling period for some of
the signals mentioned above is 10ms, we unified the sampling rate to 100Hz. Besides, the start timestamp, the end
timestamp, and the contact position of each gesture were also read from the capacitive screen for labeling. The final
dataset contains 9702 positive samples of the six gestures.

Models. The structure of different models is similar, which is inspired by TapNet[18]. We use a convolutional neural
network with multiple one-channel convolutional layers. The shapes of input and output tensors differ between models.
Fig 3 shows the structure of our models and the parameters of each layer.

Contact Detection Model. Regarding model development, it is important to decide the length of the time window.
Data collected in previous user experiments show that signal variation caused by contact can be covered by a time
window of 10 frames (100ms), which is chosen for the contact detection model. We define the frame when the gesture
starts as 𝑡0, and use IMU data in [𝑡0 - 5, 𝑡0 + 5) as positive samples. Data collected from the motions without touching
the screen is randomly split into negative samples. In order to avoid early reports, we also use data in the time window
[𝑡0 - 10, 𝑡0) as negative samples.

Position Prediction Model. The contact position should be available as soon as the user touches the screen, similar
to the contact detection task. So we also use the time window of 10 frames for position prediction and split positive and
negative samples in the same way.

Gesture Recognition Model. For gesture recognition, there remains a trade-off. The longer the time window is,
the more complex the model is and the longer it takes to run the algorithm. On the other hand, if the time window is
too short, it won’t be easy to distinguish between different gestures. By analyzing the samples collected, we summarize
the duration for each screen-based gesture: 40ms to 120ms for Tap, 400ms to 500ms for Long Tap, and 50ms to 500ms
for the Scroll gestures. Based on such discovery, we use a time window of 50 frames (500ms) for gesture recognition.
Specifically, [𝑡0 - 10, 𝑡0 + 40) is chosen for positive samples and [𝑡0 - 15, 𝑡0 + 35) for negative ones. Considering that
500ms is a relatively long time, but some gestures only last for a short time, we apply various padding operations to
them, including zero padding (append zero to the end of the original gesture data sequence), random noise padding
(append values which can be calculated by adding random noise to a fixed value such as the value when the original
gesture ends) and no padding.

3.2.3 Assistive Models.

Soft Keyboard Recognition Model. Since we take multiple Taps during a Typing as one user input step, we trained a
convolutional neural network (CNN) with the similar structure of AlexNet [26] to recognize if there is a soft keyboard
in the keyframes and condense the multiple keyframes which correspond to Typing (with a soft keyboard) to one user
input step. The gesture of such an input step is relabeled to Typing. Our CNN was trained on a dataset containing 1080
smartphone screenshots (480 with soft keyboard, 600 without soft keyboard) and achieved an accuracy of 94.82% on the
test set (containing 139 smartphone screenshots with soft keyboard and 170 without soft keyboard). We adjusted the
hyperparameters of each layer according to the requirement of our work.

UI Element Detection Model. With prior knowledge of UI elements’ position, the prediction of the target UI element
will be more accurate. Based on such a motivation to train a UI Element Detection Model for detecting the UI elements
of a given smartphone interface, we collected a dataset of smartphone UI elements and trained a UI Element Detection
Model. We built custom software to collect UI data for training this model. Our dataset contains 1006 GUI screens
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from the top 28 most popular WeChat Mini Programs. The creation of our dataset consists of two sessions: collection
and annotation. During the collection session, our software collected the screenshot of each traversed screen and
corresponding accessibility data about UI elements. Since the collected data is not completely correct, we recruited 4
label workers to annotate it. For each UI element, the label worker labeled its bounding box and assigned one of 23
UI types (Text, Image, Icon, ImageButton, TextButton, ToggleButton, CloseButton, EditText, RadioButton, Checkbox,
TabBar, TabBar Item, UnderLine, Container, Split bar, Rating bar, Scroll bar, Data Picker, Spinner, Dialog, Map) based on
its visual features. With such a dataset, we used the EasyDL Object Detection API 1 to train our UI detection model.
This model finally achieved a precision of 81.18% and a recall of 82.78%.

3.3 System Organization of the Input Step Analyzer

This part deliver how the sub-modules work together, and how their outputs are combined to generate the tutorial
metadata of each step, as Fig 1 shows. We first present how the primary sub-modules process the screencast and IMU
data separately in the initial processing. Then we illustrate the process of multi-modal fusion with the help of assistive
models. Finally, we display the output of the Input Step Analyzer.

3.3.1 Initial Processing. In this phase, the Video Processing Module process the screencast video, and the IMU Data
Processing Module extracts the user input characteristics from smartphone IMU sinals. They work independently.

Processing Screencast Video. The Video Processing Module firstly segment the screencast video into several short
video pieces which contain the keyframes of operation steps. The inter-frame salient regions and optical flow are
recorded along with each video piece. Then, the Video Processing Module filter out some redundant video pieces
and keyframe candidates according to the word information of the frames, and output a set of keyframes along with
inter-frame salient regions and optical flow.

Processing IMU Data. The IMU data is firstly processed by the contact detection model. For the data points that are
reported as positive examples by the contact detection model, they will be transmitted to position prediction model and
gesture recognition model respectively. Finally, the IMU Data Processing Module outputs a timestamp, a 6-category
gesture classification result, and a 6-category position prediction result of each positive sensor data point. The Video
Processing Module and IMU Data Processing Module work independently in this initial processing phase. Such an
organization can be implemented in an asynchronized and synchronized workflow.

3.3.2 Multi-modal Fusion. In this phase, we leverage two pre-trained assistive models to process the keyframes that
we extract from the screencast and combine the output of the video channel with the IMU channel. Finally, we get the
keyframe, gesture, target UI element, and instructional text for each step.

Keyframe Filtration. With the keyframes we segmented from the screencast, we firstly use the Soft Keyboard
Recognition Model to condense the keyframes corresponding to "Typing" as one frame. After that, with the timeline of
the user input step that we extract from IMU data, we filter out the redundant frames that cannot be aligned to the
timeline. Considering that there may be some time difference between the IMU channel and the video channel, to ensure
the recall of user input steps, we set a relatively wide time window of 1000ms [𝑡0 - 300, 𝑡0 + 700) for each timestamp
𝑡0, and filter out the keyframes that don’t fall into the time window. In this process, the redundant frames containing

1https://ai.baidu.com/easydl/app/model/objdct/models
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Fig. 4. Pipeline to predict the target UI element. The system firstly extract the candidate regions by combining video channel with
IMU channel. Then, it selects the position that has the highest IoU with the UI elements that the UI Element Detection Model outputs.

the animation from non-user input (e.g., system notification, popup windows) are filtered out, further improving the
precision of user input steps.

Gesture Relabeling. We used the soft keyboard recognition model to recognize Typing as Typing is highly relevant
with soft keyboard, and relabeled the multiple Taps as one Typing. For Tap and Long tap, we directly use the result of
the IMU Data Processing Module because it is difficult to distinguish these two gestures from the video channel. For the
scroll-based gestures (Scroll up, Scroll down, Scroll left, Scroll right), only when the inter-frame optical flow shows
the feature points’ horizontal or vertical movement and the IMU data shows the corresponding scroll-based pattern,
we label the gesture as scroll-based gestures. The direction depends on the direction of feature points movement that
optical flow displayed.

With such a multi-modal fusion strategy, we can correct some errors caused by the individual channel. For example,
tapping a specific UI element may sometimes cause screen content’s rightward/leftward movement animation. In this
case, using the optical flow pattern only may result in the failure of recognizing the correct gesture, which requires the
IMU channel for gesture recognition. Sometimes the IMU Data Processing Module may fail to recognize the direction of
finger movement in such a short time window. In this case, the inter-frame optical flow can help to calculate the correct
direction of a scroll-based gesture. However, recognizing Long Tap is difficult for both channels, and we discuss this
limitation in the discussion section.

Target UI Element Prediction. With keyframes and gestures for each step, we tend to predict the target UI element on
which the gesture is performed. Our target is to narrow the range of visual searching when the tutorial creator is trying
to find and highlight the position of the target UI element in the tutorial creation process. With such information, we
can highlight the position of the target UI element in the semi-finished tutorial so that the tutorial creator can check
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the target UI element of each step quickly without searching on the interface for several seconds. We define a correct
prediction result as a bounding box that contains the target UI elements. We limit the size of this bounding box to no
larger than 1/3 size of the whole screen.

We leverage the position prediction result of the IMU channel, salient regions calculated from the Video Processing
Module, and the result of the UI Element Detection Model to predict the position of the target UI element. As Fig 4
shows, each channel calculates several candidate bounding boxes. We select the bounding boxes from the salient regions
inside the top 2 results of the IMU channel. Then we further calculate the IoU between the selected bounding boxes
and the output of the UI Element Detection Model, and select the bounding box with the highest IoU. Sometimes, no
bounding box of inter-frame difference is inside the top 2 results of the IMU channel (e.g., some UI elements have no
visual feedback when users touch on it). In this case, we select the top 2 results of the IMU channel in the case they are
adjacent and select the top 1 result with its horizontal adjacent in case the top 2 results are bidiagonal.

Generation of Instructional Text. We generate initial instructional text to present what to do with the target UI element
in the interface. The template of the initial instructional text is defined as “gesture + text label” of the target object. With
the position of the target UI element where tutorial creators contact, we use the OCR technique to get the text label of
the target object. Then we simply combine the gesture and text label to generate the initial instructional text (e.g., we
combine the gesture “Tap” and text label “wallet” together to generate a simple instructional text “Tap the wallet”).
If there is no text label, the initial instructional text will only contain the gesture type. The initial instructional text
provides a template and entrance, which allows the user to refine the instructional text. We believe it is more convenient
for tutorial creators to directly refine the instructional text than to create an instructional text all by themselves.

3.3.3 Output of Input Step Analyzer. As shown in Fig 1, the output of the Input Step Analyzer is the metadata of tutorial
steps. For each step, the metadata includes the keyframe, the gesture of the user input, the position of the target UI
element, and the initial instructional text. With such metadata, the Tutorial Generator of SmartRecorder generates a
semi-finished tutorial that contains a visual guide of the target object and initial instructional text. The semi-finished
tutorial with metadata will be sent to the Tutorial Refinement Editor. Fig 9 shows the semi-finished tutorial of a certain
step and its display in the Tutorial Refinement Editor.

3.4 Technical Evaluation

In this section, we present the evaluation of the IMU-based Input Step Analyzer. We first report the performance of the
IMU Data Processing Module. Then we present the system performance with and without the IMU channel. The result
shows although there are some challenges in the IMU Data Processing Module, the IMU channel significantly improves
the system performance. Video channel and IMU channel have the potential to make up for each other’s defects.

3.4.1 Evaluation of the IMU Data Processing Module. We split the whole IMU dataset that we collected into train set,
validation set, and test set (8:1:1). The validation set helps to deal with the overfitting problem, and we stop training
when the results on the validation set converge. We report the performance of each model on the test set as follows.

Contact Detection Model. We first took an overview of the sensor data in the IMU dataset that we collected and
filtered some abnormal data. In data collection, we collected the sensor data from participants’ own devices, while some
devices failed to offer normal sensing signals. For example, Fig 5a shows the normal linear acceleration signals in a data
collection process. Since we asked the participants to tap the screen with normal pressure, gentle pressure, and heavy
pressure each for about 30s when collecting tap signals, the figure shows normal variation feature and signal range
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(a) Normal linear acceleration signal offered by a participant
in data collection process

(b) Abnormal linear acceleration signal offered by a partici-
pant in data collection process

Fig. 5. Comparison between normal (a) and abnormal (b) linear acceleration signal collected in IMU dataset

Table 1. Technical evaluation of contact detection model

Model Accuracy Precision Recall F1

Contact detection 0.982 0.977 0.975 0.976

Fig. 6. Normalized confusion matrix of position prediction model

(even the signals of gentle taps are higher than 0.5). However, Fig 5b shows the abnormal linear acceleration signal that
all signal points of taps are lower than 0.5. As a result, we filtered out such samples before evaluation, which account
for 24.4% of the original positive dataset. Then we evaluated our contact detection model on the test set. As Table 1
shows, the 2-class contact detection model achieves an accuracy of 98.2% with high precision (97.7%) and recall (97.5%),
which can be further improved by combining the video channel with the IMU channel.

Position Prediction Model. The accuracy of this 6-class position prediction model seems to be limited (72.8%), so we
perform further analysis to check whether the model could be applied in practice. As the normalized confusion matrix
in Fig 6 shows, most mispredictions occur in two adjacent grids. For example, some gestures in grid 1 are predicted to
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Table 2. Technical evaluation of gesture recognition model

Gesture Precision Recall Confusion Matrix
Tap Long tap Scroll up Scroll down Scroll left Scroll right

Tap 0.856 0.948 0.948 0.013 0.01 0.008 0.013 0.008
Long tap 0.649 0.387 0.371 0.387 0.097 0.016 0.081 0.048
Scroll up 0.834 0.846 0.067 0.007 0.846 0.02 0.04 0.02

Scroll down 0.877 0.821 0.064 0.019 0.026 0.821 0.026 0.045
Scroll left 0.85 0.828 0.073 0.013 0.033 0.033 0.828 0.02

Scroll right 0.869 0.84 0.053 0.013 0.04 0.04 0.013 0.84

Table 3. Performance of SmartRecorder with and without IMU channel

Devices Tasks Steps precision of steps recall of steps target UI prediction accuracy gesture accuracy
without IMU with IMU without IMU with IMU without IMU with IMU with IMU

device 1

T1 5 100%(5/5) 100%(5/5) 100%(5/5) 100%(5/5) 80%(4/5) 100%(5/5) 100%(5/5)
T2 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 100%(3/3) 100%(3/3)
T3 8 100%(7/7) 100%(7/7) 87.50%(7/8) 87.50%(7/8) 42.86%(3/7) 100%(7/7) 100%(7/7)
T4 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 66.67%(2/3) 100%(3/3)
T5 8 100%(8/8) 100%(8/8) 100%(8/8) 100%(8/8) 75%(6/8) 75%(6/8) 87.50%(7/8)
T6 7 87.50%(7/8) 100%(7/7) 100%(7/7) 100%(7/7) 57.14%(4/7) 71.43%(5/7) 100%(7/7)
T7 5 83.33%(5/6) 100%(5/5) 100%(5/5) 100%(5/5) 80%(4/5) 60%(3/5) 100%(5/5)
T8 4 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 75%(3/4) 100%(4/4) 75%(3/4)
T9 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3)
T10 5 100%(5/5) 100%(5/5) 100%(5/5) 100%(5/5) 60%(3/5) 80%(4/5) 100%(5/5)

device 2

T1 5 100%(5/5) 100%(5/5) 100%(5/5) 100%(5/5) 80%(4/5) 100%(5/5) 100%(5/5)
T2 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 100%(3/3) 100%(3/3)
T3 8 100%(8/8) 100%(8/8) 100%(8/8) 100%(8/8) 50%(4/8) 75%(6/8) 100%(8/8)
T4 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 66.67%(2/3) 100%(3/3)
T5 8 88.89%(8/9) 100%(8/8) 100%(8/8) 100%(8/8) 75%(6/8) 87.50%(7/8) 100%(8/8)
T6 7 70%(7/10) 87.50%(7/8) 100%(7/7) 100%(7/7) 57.14%(4/7) 71.43%(5/7) 100%(7/7)
T7 5 62.50%(5/8) 62.50%(5/8) 100%(5/5) 100%(5/5) 80%(4/5) 80%(4/5) 100%(5/5)
T8 4 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 75%(3/4) 100%(4/4) 75%(3/4)
T9 4 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 75%(3/4) 100%(4/4) 100%(4/4)
T10 6 85.71%(6/7) 100%(6/6) 100%(6/6) 100%(6/6) 66.67%(4/6) 100%(6/6) 83.33%(5/6)

Mean value 5.20 93.90% 97.50% 99.38% 99.38% 69.77% 86.68% 96.04%

grid 0, which is on the left side of the target, or to grid 3, which is below the target. Considering that the contact on the
border of two adjacent grids could be difficult to distinguish, we also calculate the top 2 accuracy, which appears much
better (90.3%). This indicates that this model could still be useful for predicting the touch position, especially when
combined with the video channel.

Gesture Recognition Model. The gesture recognition model distinguishes six different gestures (Tap, Long tap, Scroll
up, Scroll down, Scroll left, Scroll right). The model accuracy is 84.9%. As is shown in Table 2, the biggest challenge for
the model is the recognition of Long Tap, which can be easily confused with Tap. The recall of all other gestures is
above 82.1%, and Tap achieves the highest (94.8%). The misrecognized scroll gestures are most likely confused with Tap
since some scroll gestures may be too fast or too gentle for the IMU to capture the scroll features. To tackle such a
challenge, we leverage optical flow features from the video channel in our multi-modal fusion stage.
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Fig. 7. Technique pipeline of SmartRecorder

3.4.2 Performance of SmartRecorder with and without IMU Data Processing Module for Calculating the Tutorial metadata

Automatically . To evaluate the performance of our approach for calculating the tutorial metadata from the screencast
and IMU data, we made 20 recordings of smartphone interaction tasks with two different devices (Honor 20 and Huawei
Mate 30 pro) and labeled 104 user input steps as our test set. We first removed the IMU Data Processing Module out and
let SmartRecorder generate semi-finished tutorials with the video channel only. Without IMU Channel, it is hard to
recognize the gesture of each step from the video channel solely, so it only segments the user input steps and predicts
the target UI element of each step. Then we evaluated the whole system (with IMU channel) on the same dataset.

As Table 3 shows, without the IMU channel, the average recall of user input steps achieved 99.38%, and the average
precision is 93.90%. The mean accuracy of target UI element prediction is 69.77%. With the IMU Data Processing
Module, the average recall of user input steps remains 99.38%, and the average precision achieved 97.50%. The mean
accuracy of target UI element prediction is 86.68% and the mean accuracy of gesture prediction for each step is 96.04%.
Wilcoxon signed-rand test revealed that the IMU channel significantly improves the precision of the SmartRecorder for
automatically segmenting user input steps (p < 0.05) and the accuracy for predicting target UI elements (p < 0.01).

4 DESIGN OF SMARTRECORDER

Based on the IMU-based Input Step Analyzer, we propose SmartRecorder to generate video tutorials of smartphone
interaction tasks with machine automation and minimal human involvement. It consists of two front-end modules:
Screencast Module (collects the screencast and IMU data during the process of an interaction task demonstration) and
Tutorial Refinement Editor (enables tutorial creators to refine the tutorial metadata) and two back-end modules: Input
Step Analyzer (calculates the initial metadata of the tutorial from the screencast and IMU data of demonstration) and
Tutorial Generator (generates semi-finished tutorial for refinement and final video tutorials). We present the technique
pipeline of SmartRecorder (see Fig 7) in this section.

4.1 Front end: Screencast Module

Users can use Screencast Module to record the process of completing a smartphone interaction task. It not only records
the screen animation but also records the smartphone IMU data. When users stop recording, the screencast, as well as
the corresponding IMU data, will be sent to Input Step Analyzer for user input analysis. We designed the interface of
this module based on an open-source project2.

2https://play.google.com/store/apps/details?id=com.app.kk.screenrecorder
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Fig. 8. Interaction flow to check and refine the metadata of semi-finished tutorial

4.2 Back end: Input Step Analyzer

We use the technique we introduce in Section 3 to process the screencast and IMU data that Screencast Module collects.
Input Step Analyzer calculates the initial tutorial metadata for generating a semi-finished tutorial.

4.3 Front end: Tutorial Refinement Editor

Considering that the tutorial metadata that Input Step Analyzer automatically extracts from a screencast cannot
achieve 100% correctness, we designed an easy-to-use editor to help non-experts check and refine the metadata of
the semi-finished tutorial quickly. This editor was designed based on the performance of the Input Step Analyzer. We
summarize its characteristics as follows. (1) There is no need for users to add the keyframe of each step. Users just need
to check the semi-finished tutorial and delete the redundant steps. Based on our analysis of professional software [37],
the most difficult to learn and time-consuming features are those tools that users should leverage to add content actively.
However, checking and deleting content is relatively easy. We ensure the high recall (99.38%) of key steps so that users
do not need to insert keyframes actively. They just need to check the steps and delete redundant steps. (2) For each
step, users do not need to draw instructional content; they only need to move the bounding box to highlight the target
UI element more accurately and refine the instructional text. Users can do this in a templated interface and refine the
instructional text directly instead of using some tools (like the rectangle tool and text box tool in Premiere) to draw the
instructional content. 3) There is no need for users to consider what the instructional content looks like; they only need
to ensure its correctness.

Fig 8 shows the interaction flow to check and refine the metadata of the semi-finished tutorial. The refinement
editor presents an overview of tutorial steps, and the creator can check whether the tutorial content is correct. If there
is a redundant step, the creator can delete it. Users can also get into the refinement interface to refine the position
of the visual guide and the instructional text (e.g., in Fig 8, the second image shows a highlight box containing two
UI elements, and the instructional text only indicates the gesture. The creator can click the "refine" button, narrow
the range of the visual guide, and write the instructional text in detail). We require users to use the words which
describe the gesture, such as tap" and "typing" when editing the instructional text so that SmartRecorder can correct the
corresponding gesture in the metadata accordingly. During this refinement process, the SmartRecorder automatically
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Fig. 9. A step of a semi-finished tutorial, which contains the tutorial metadata, and its display in the Tutorial Refinement Editor

corrects the metadata from Input Step Analyzer. For example, besides removing the redundant step, SmartRecorder
extracts the keywords of the refined instructional text to get the gesture information and update the gesture label in
tutorial metadata. The record of the target UI element position will be updated, and the instructional text stored in
metadata will also be changed to what the creator finally writes. When the user clicks the button "Generate," the refined
metadata will be sent to the Tutorial Generator, which generates the final video tutorial.

4.4 Back end: Tutorial Generator

4.4.1 Generating Semi-finished Tutorial. With the keyframe image of each step, we first highlight the position of the
target UI element recorded in the metadata file and show the instructional text near the highlight region. These two
elements are the basic content of a tutorial, with which the recipient can get what to do in each step. The generated
tutorial is in a static format to display the tutorial metadata (see Fig 9), and it can be sent to the Tutorial Refinement
Editor for further refinement.

4.4.2 Video Tutorial Generator. As video tutorials have the advantage of showing input gestures [38], we pre-designed
short cartoon animations of every gesture and stored them in the back end for inserting them to the final video tutorial.
According to the requirements for the video length [30], each gesture animation lasts about 3 seconds to show the
corresponding gesture, not too long or too short. After adding instructional text and highlight region to the keyframe of
each step, we merge every keyframe with every frame of its corresponding gesture animation according to the position
of the target UI element and generate a short video piece of every step. Then we insert the generated instructional
video piece into the original screencast according to the timestamp of each keyframe so that the video tutorial displays
the instructional content step-by-step. We also refer to some prior works to improve accessibility in terms of interface
font size, object size, and element position [35].

5 USER STUDY: EVALUATING VIDEO TUTORIAL CREATION EFFICIENCY AND GUIDING EFFECT OF
SMARTRECORDER

We conducted a two phase user study to evaluate the performance of SmartRecorder from the end-user perspective. At
the beginning of this two-phase user study, we designed 6 interaction tasks (see Table 4). Then in phase 1, we evaluate
creators’ efficiency of using SmartRecorder to create video tutorials. We recruited expert participants (EP) who have
expertise in video editing and non-expert participants (NP) who have no expertise in video editing to create video
tutorials of the interaction tasks shown in Table 4 in this phase. In phase 2, we evaluate the guiding effectiveness of the
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Table 4. Interaction tasks and operation steps

No. Name Operation steps

T1 Check the bill in "WeChat" Tap the "WeChat" icon -> Tap the "Me" tab -> Tap the "Pay" button ->
Tap the "wallet" button -> Tap the "bill" button

T2 Start the simple mode of smartphone

Scroll the screen and find the setting -> Tap the "Setting" icon ->
scroll the menu list and find the item "system and update" ->
Tap the item "system and update" -> scroll the menu list and find the item "simple mode" ->
Tap the item "simple mode"

T3 Search the "Baidu" app in minus 1 screen Keep swiping the screen rightward into the minus 1 screen -> Tap the searching box ->
Input the word "Baidu" -> Tap the appeared "Baidu" icon

T4 Mobile service payment with Alipay
Tap the "Alipay" icon -> Tap the "mobile service payment center" button ->
Tap the phone number input box -> Input the phone number -> Tap an amount button ->
Tap the "pay right now" button

T5 Delete a message Tap the "Message" icon -> Long press on the message that need to be deleted ->
Tap the "delete" button -> Tap the "confirm" button

T6 Create a memo Tap the "Memo" icon -> Tap the "create" icon ->
Input the memo content -> Tap the "save" icon

video tutorials generated by SmartRecorder in terms of guiding tutorial recipients to complete interaction tasks. We
recruited another 18 participants to evaluate the guiding effectiveness of the video tutorials that are created during
phase 1 in this phase.

5.1 Phase 1: Video Tutorial Creation Efficiency Evaluation

5.1.1 Participants. Through online contact, we recruited 12 participants who are college students or researchers to play
the role of tutorial creator in this phase. 6 (3 female and 3 male; aged from 22 to 30, M = 26.33, SD = 2.74) of them were
expert users of video editing with more than 1 year of video editing experience and all majored in design (abbreviated
as EP). The other 6 participants (3 female and 3 male; aged from 20 to 24, M = 21.83, SD = 1.57) had no prior video
editing experience (abbreviated as NP). Demographic information of the participants is listed in Table 5, Appendix. We
provided the each EP with 100 yuan and each NP with 200 yuan as the compensation.

5.1.2 Apparatus. We conducted this experiment in a meeting room and provided each participant with a smartphone
(Huawei Mate30 Pro), which had the SmartRecorder and video editing tools that expert participants usually use installed.
For P4, who usually uses Adobe Premier, we allowed him to use his own desktop with Adobe Premier to participate
in our experiment. We also prepared a video tutorial that was created artificially to show participants what elements
should be included in the video tutorial.

5.1.3 Procedure. Although most of the EPs major in information design, we still showed all of them the video tutorial
example and introduced the elements that they should display in their created video tutorials before the creation process.
For the NPs, we did not do this because SmartRecorder can generate the tutorial automatically.

For each EP, we conducted the experiment through the following steps.
Step I:We taught each participant how to use SmartRecorder first and let them get familiar with it for about 3 minutes.
Step II: We showed the path to complete an interaction task before the participant started to create the tutorial of it.
Step III: The participant leveraged their daily used video editing tools (baseline) to make the video tutorial of the

given interaction task. We ignored the time they spent on screen recording and recorded the time they spent on video
editing.
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Step IV: The participant leveraged SmartRecorder to make the video tutorial of the given interaction task and we
recorded the time they spent on refining the semi-finished tutorial in this process.

Step V: Repeated Step II, III, and IV on the next interaction task and exchanged the sequence of Step III and Step IV
for counterbalance.

Step VI:We asked the participants to fill out a questionnaire about the user preference (1 = the lowest user preference,
5 = the highest user preference), fatigue (1 = the most fatiguing, 5 = the least fatiguing), ease-of-use (1 = the most
difficult to use, 5 = the easiest to use) and learnability (1 = the most difficult to learn, 5 = the easiest to learn) regarding
baseline and SmartRecorder. Participants were required to rate the above four indicators on 5-point Likert scales for
each tutorial creation process. The scale direction is the higher the better.

For each NP, we conducted the above steps without III, and they only rated the score for SmartRecorder in Step VI.
The study lasted about 1 hour with each NP and about 2 hours with each EP.

5.1.4 Results and Discussion. Data Collection. Through the experiment, we got 36 completion time records (6
participants x 6 interaction tasks) from EPs with baseline, 36 completion time records from EPs with SmartRecorder,
and 36 completion time records from NPs with SmartRecorder. We also collected 36 (6 participants x 6 interaction
tasks) scores on each indicator from EPs for baseline, 36 scores from EPs for SmartRecorder, and 36 scores from NPs for
SmartRecorder.

Time for Creating the Tutorials. The average time that EPs spent on video editing with the baseline tool is 349.67s
(SD = 253.24) and is 132.64s (SD = 69.38) with SmartRecorder. The average time that NPs consumed is 85.25s (SD =
43.68), with SmartRecorder. The completion time distribution suggested non-normality, confirmed by a Shapiro-Wilk
test. Wilcoxon signed-rank test revealed that compared with baseline, EPs spent significantly less time (p<0.001) when
using SmartRecorder to create video tutorials. The time cost is reduced by 62.07%. Mann-Whitney’s U test revealed that
NPs also spent significantly less time (p<0.001) when using SmartRecorder than EPs spent when they used baseline,
and time cost is reduced by 75.62%.

Subjective Experiences for Creating the Tutorials. Fig 10, shows the box plot of subjective scores that the
baseline and SmartRecorder got in terms of ease-of-use, fatigue, learnability, and user preference. The distribution of
the ratings is non-normal, confirmed by a Shapiro-Wilk test. Among EPs, Wilcoxon signed-rank test revealed that
SmartRecorder got significantly higher ratings on each indicator (ease-of-use: Median = 4, IQR = 1; fatigue: Median = 4,
IQR = 0.25; learnability: Median = 4, IQR = 1; user preference: Median = 4, IQR = 0.25) than baseline (ease-of-use: Median
= 2.5, IQR = 1; fatigue: Median = 3, IQR = 1.25; learnability: Median = 3, IQR = 1.25; user preference: Median = 3, IQR =
3) with following p values (ease-of-use: p<0.001; fatigue: p<0.001; learnability: p=0.004<0.01; user preference: p<0.001).
Mann-Whitney’s U test showed that NPs also rated significantly higher scores (p<0.001) on each indicator (ease-of-use:
Median = 4, IQR = 1; fatigue: Median = 4, IQR = 2; learnability: Median = 5, IQR = 1; user preference: Median = 4, IQR =
1) for SmartRecorder when compared with the scores that EPs assigned to baseline. There is no significant difference
between EPs’ scores and NPs’ scores for SmartRecorder in terms of ease-of-use, fatigue, and user preference. For the
indicator "learnability", NPs assigned significantly higher scores than EPs (p = 0.019 <0.05). It possibly resulted from
that SmartRecorder facilitated NPs to conveniently achieve what they were unable to do in the past while it didn’t have
such an impact on EPs.

The result of this study shows that with SmartRecorder, people without video editing skills can create video tutorials
with even less time than those with video editing skills and use familiar video editing tools. From the subjective feedback,
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Fig. 10. Results of subjective evaluation on baseline and SmartRecorder

SmartRecorder can significantly reduce the fatigue and the learning cost of creating video tutorials and is much easier
to use than EPs daily used tools.

5.2 Phase 2: Guiding Effectiveness Evaluation

5.2.1 Participants. In this phase, we recruited 18 participants (10 females, 8 males; aged from 26 to 73, M = 53.39, SD =
17.52) through online contact based on the criteria that participants should be unfamiliar with the interaction tasks that
we listed in Table 4. All of the participants have middle school degrees or above, and all of them have 3 years or above
smartphone-using experience. Demographic information of our participants in this phase is listed in Table 6, Appendix.
We provided each of them with 100 yuan for their participation.

5.2.2 Apparatus. This experiment was conducted in a meeting room, and two smartphones were used during the
experiment. One smartphone was used (Honor V20) to play the video tutorials made in phase 1, and the other one
(Huawei Mate30 Pro) was used to complete the interaction tasks listed in Table 4. The tutorials created in the prior phase
were re-organized into 6 groups of baseline tutorials (created with baseline tools by EPs) and 6 groups of SmartRecorder
tutorials (created with SmartRecorder by NPs). For each group, each tutorial was from different authors and aimed at
different interaction tasks with latin square to counterbalance the author’s impact. We assigned each group to three
participants, and the assignment was counterbalanced on gender. Each participant got two groups of tutorials. One
group is the baseline tutorial, and the other group is the SmartRecorder tutorial.

5.2.3 Procedure. We allowed each participant about 1 minute to get familiar with the smartphone that we provided
before they started to complete the interaction tasks. During the experiment, participants were asked to complete the
interaction tasks listed in Table 4 with the guidance of two groups of video tutorials. For each interaction task, we
played the corresponding video tutorials on one smartphone, and the participant completed the interaction task on the
other smartphone. We looped the video until the participant finished the task. The participant could revisit the video at
any time in this process. We recorded the time from the start of watching the video tutorial to the completion of the
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interaction task. If the participant could not understand the tutorial content or was unable to complete the task, we
allowed them to give up that task. After they completed all of the interaction tasks once, we asked the participants
to rate their satisfaction (1 = the lowest satisfaction, 5 = the highest satisfaction) to each video tutorial that they just
learned from on 5-point Likert scales and allowed them to have a rest for about 5 minutes. Then, we changed to the
other group of video tutorials. The participant needed to complete the interaction tasks again with the guidance of a
new group of tutorials. The sequence to play two groups of tutorials was counterbalanced. We took brief interviews
with the participants about their comments on the two types of tutorials after they finished all interaction tasks. Each
participant took about 1 hour to finish the whole process.

5.2.4 Results and Discussion. There are 108 (6 interaction tasks x 18 participants) interaction tasks required to be
completed in total with the guidance of baseline tutorials and SmartRecorder tutorials. The result shows that the
video tutorials created with SmartRecorder could facilitate participants to complete the interaction tasks with higher
completion rate, less completion time and higher satisfaction.

Completion Rate. The completion rate of the baseline group is 96.27%(104/108). P2 failed in T3 for being unable to
understand the goal of this task and T5 for their inability to understand the meaning of “long press” in instructional text.
P10 failed in T1 for being unable to catch up with the instructional content and finally gave up. P12 also failed in T5 for
unbale to understand the meaning of “long press”. The completion rate of the SmartRecorder group is 99.07%(107/108).
P2 failed in T3 for still being unable to understand the task goal.

Completion Time. For the tasks that were completed successfully, we got 104 completion time records of the
baseline group and 107 completion time records of the SmartRecorder group. The average completion time of the
baseline group is 68.88s (SD = 48.46), and the average completion time of the SmartRecorder group is 53.47s (SD =
39.16). Shapiro-Wilk test confirmed the non-normality of completion time. Mann-Whitney’s U test showed that with
the tutorial generated from SmartRecorder, the average completion time of an interaction task was significantly less (p
= 0.005 < 0.01) than that with baseline tutorials.

Subjective Satisfaction. We collected 108 (6 interaction tasks x 18 participants) satisfaction scores on baseline
tutorials and tutorials generated from SmartRecorder. Shapiro-Wilk test suggested the non-normality of ratings and
Wilcoxon signed-rank test revealed that tutorials generated from SmartRecorder got significantly higher user satisfaction
(Median = 5, IQR = 1) than baseline tutorials (Median = 4, IQR = 2) with p<0.001.

Cause of Higher Satisfaction. Compared with the baseline group, the main cause of higher user satisfaction and
less completion time for the SmartRecorder group was the smooth pace of the video tutorial. In the baseline group, some
tutorials only lasted for less than 1 second, which led to participants’ failure to keep up with. Take P4 as an example “I
like the tutorial that the machine generated, I feel it has a buffer time for me to watch. The other version plays too fast

and ends before I can’t make sense of it.” P7 also indicated that “The prior version (baseline group) is sometimes too fast,

and it’s no doubt that the second type (SmartRecorder group) is better. But it will be much better if it can be more slowly

and pause longer time in the instructional piece to allow us more time to make sense of it.”. We also observed that the
participants needed to revisit and replay the tutorial videos in the baseline group much more times which led to a longer
completion time. Since we add the gesture animation to each instructional video piece, the length of the instructional
piece is extended, which results in a more friendly instruction pace. Additionally, compared with manually created
video tutorial, auto-generated video tutorials make it easier to keep the pace of the video steady by uniformly setting
the length of the instructional video clips. However, some participants like P7 proposed that the pace of the generated
tutorial video remained to be optimized. We believe this is an interesting point that deserves further exploration.
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6 DISCUSSION

We firstly discuss the novelty of our work. Then we indicate the limitation and future work of this study.

6.1 The Novelty of Our Work

We discuss the novelty of our work from two aspects. From the perspective of technique, we leverage smartphone IMU
to analyze user input characteristics, which presents a new method to process the media information on smartphones
and generate tutorials about smartphone usage. From the perspective of the human-computer collaboration, we improve
the recall of tutorial steps to let creators delete the redundant steps and refine the tutorial content directly with an
easy-to-use editor, which lowers the time cost and skill requirement. We also propose that facilitating end-users to be a
checker and refiner of machine automation can be a promising way of human-computer collaboration.

6.1.1 Leveraging smartphone IMU to Analyze User Input Characteristic. TapNet [18] explored the potential of smartphone
IMU to recognize multiple tap properties, including tap direction and location, in the context of off-screen interaction.
We further explore the feasibility of recognizing the screen-based gestures (Tap, Long tap, Scroll up, Scroll down, Scroll
left, Scroll right) and apply this technique to tutorial generation. To tackle the challenge of extracting user interaction
trace from screencast, smartphone IMU is a channel that has great potential to use with low privacy risk and without
complicated user settings (compared with using Accessibility API [28, 39, 44]). Considering the popularity of IMU
sensors on smartphones regardless of the operating system, using IMU to assist screencast processing will be more
pervasive and accessible than some existing methods. The technique evaluation also shows that combining the video
channel with the IMU channel will compensate for each other’s defects and improve the system performance when
extracting tutorial metadata from the demonstration.

6.1.2 Human-Computer Collaborative Tutorial Creation. Since it is hard to ensure the correctness of the tutorial content
with fully automated approaches, we involve the creators as a role of a checker and refiner of the machine automation.
In SmartRecorder, the editing complexity is reduced from video editing to image refinement, which reduces the skill
requirement, decreases the time cost, and facilitates the creation of non-experts. The back-end Input Step Analyzer
supports the design of Tutorial Refinement Editor. It automatically extracts the key information of each tutorial step,
which reduces the human work on information retrieval. With a high recall of key steps, the tutorial creator only needs
to delete the redundant steps and refine the tutorial metadata in several images, which liberates them from timeline
operation and information reorganization. We believe that facilitating end-users to be a checker and refiner of machine
automation can be a promising way to improve human-computer collaborative work. It not only reduces the human
workload and skill requirements but also keeps the correctness of the result.

6.2 Limitation and Future Work

We discuss this study’s limitations and future work from the perspective of IMU data processing, the target group of
tutorial recipients.

6.2.1 IMU Data Processing. For the contact detection model, we filter out some gentle touches that cause the fluctuation
of linear acceleration below 0.5. If the user touches the screen too gently, it will be hard for the contact detection model
to detect the contact. However, as the mean value of a positive sample is 2.1, the accuracy will be high when the user
touches the screen with normal pressure. For the gesture recognition model, since the similar tap properties between
Long Tap and Tap, we find that distinguishing these two gestures is difficult, which affects our gesture classification
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accuracy. As for the position prediction model, since the contact on the border of two adjacent grids is difficult to
distinguish, our 6-class position prediction is not good yet. As a result, we leverage the top 2 results of position in
the following UI element position prediction. In the future, we will collect more data for model training and optimize
the model for IMU data processing. We believe the improvement of the IMU data processing model can reduce the
complexity of the following technique pipeline and further improve the performance of the Input Step Analyzer.

6.2.2 Specific Study on Recipient Groups. As this work mainly focuses on the creation process of the video tutorial,
we focus less on the different requirements of different recipient groups. As general video tutorials can not always
satisfy all persons, there remains much research space for exploring the specific needs of varying recipient groups.
For example, when creating a tutorial for children or people with visual impairments, there should be some special
requirements for the tutorial content design [23, 34]. Also, the user studies lack qualitative research, which leads to our
weak contribution to the recipients’ personalized feedback and design opportunities for different recipient groups. In
the future, we will conduct more user studies to divide recipients into different groups and explore the specific needs of
different recipient groups so that we can optimize the tutorial generated by SmartRecorder for different people.

7 CONCLUSION

This paper presents SmartRecorder, a novel tool that generates video tutorials of smartphone tasks with machine
intelligence and minimal human effort. With the screencast and IMU data (vibration characteristics generated by user
touch) collected in the task completion process, SmartRecorder leverages computer vision and sensing algorithms to
extract key information (keyframes, target UI element position, gesture) of each input step in the screencast and generate
the tutorial video. Through a two-phase user study, we evaluated the efficiency and effectiveness of SmartRecorder. The
results show that SmartRecorder facilitates non-experts to create video tutorials with significantly less time (reduced
by 75.62%) and higher satisfaction from tutorial recipients. Using IMU data to improve the performance of automatic
interaction trace extraction is novel among existing methods. Additionally, SmartRecorder provides tutorial creators
with an easy-to-use tutorial refinement editor designed based on the high recall for key steps to revise the tutorial
content, which minimizes human effort and ensures the correctness of tutorial content. We also discuss that involving
human creators as a checker and refiner for the result that machine intelligence creates can be a promising way for
human-computer collaboration.
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Table 5. Expert and Non-expert participants in the first phase of user study

Label No Age Gender Profession Video editing tool

EP P1 29 F Researcher working in human factor Viamaker
EP P2 22 F Student majoring in information design Viamaker
EP P3 26 F Student majoring in information design VUE
EP P4 30 M Student majoring in architecture design Adobe Premier
EP P5 24 M Student majoring in information design Viamaker
EP P6 27 M Student majoring in information design Viamaker
NP P7 24 M Student majoring in computer science None
NP P8 23 M Student majoring in computer science None
NP P9 20 M Student majoring in computer science None
NP P10 20 F Student majoring in social science None
NP P11 23 F Student majoring in social science None
NP P12 21 F Student majoring in management None

Table 6. Demographic information of participants in the second phase of user study

No Age Gender Education level Years of smartphone usage

P1 70 F Junior middle school 5
P2 67 M Senior middle school 4
P3 63 F Senior middle school 8
P4 73 F college 6
P5 68 F college 10
P6 61 F Senior middle school 7
P7 64 M college 6
P8 61 F Senior middle school 6
P9 65 M Senior middle school 7
p10 65 F Senior middle school 3
P11 70 M Junior college 9
P12 61 M Senior middle school 4
P13 29 M Post graduate. above 10
P14 28 M Post graduate above 10
P15 33 F Post graduate above 10
P16 26 F Post graduate above 10
P17 26 F Post graduate above 10
P18 33 M Post graduate above 10
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