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Think-aloud protocols are a highly valued usability testing method for identifying usability problems. De-

spite the value of conducting think-aloud usability test sessions, analyzing think-aloud sessions is often time-

consuming and labor-intensive. Consequently, previous research has urged the community to develop tech-

niques to support fast-paced analysis. In this work, we took the first step to design and evaluate machine

learning (ML) models to automatically detect usability problem encounters based on users’ verbalization and

speech features in think-aloud sessions. Inspired by recent research that shows subtle patterns in users’ ver-

balizations and speech features tend to occur when they encounter problems, we examined whether these

patterns can be utilized to improve the automatic detection of usability problems. We first conducted and

recorded think-aloud sessions and then examined the effect of different input features, ML models, test prod-

ucts, and users on usability problem encounters detection. Our work uncovers several technical and user

interface design challenges and sets a baseline for automating usability problem detection and integrating

such automation into UX practitioners’ workflow.
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1 INTRODUCTION

Think-aloud protocols are often used and valued by user experience (UX) practitioners to un-
derstand the problems that users encounter while interacting with products via their verbalized
thought processes [28, 42, 50]. However, analyzing recorded think-aloud sessions is often arduous
and entails scrutinizing users’ verbalizations (i.e., utterances) and conducting video/audio analy-
sis to pinpoint the problems that they encountered [35, 39]. Furthermore, UX practitioners often
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work under time pressure and tend to perform quick rather than rigorous analyses. As a result,
researchers have argued for developing techniques to support fast-paced analysis [24, 43].

To facilitate the analysis of think-aloud sessions, Cooke analyzed what users verbalized dur-
ing think-aloud sessions and categorized their verbalizations into four categories [14]. These four
categories were further confirmed and extended by other studies [21, 29, 32, 57]. Recently, Fan
et al. went a step further to examine whether there are patterns in users’ verbalization and speech
features that are indicative of usability problems that they encounter [23]. They found that when
users encounter usability problems, they tend to verbalize utterances of one particular type of ver-
balization (e.g., comments) more often than other types of verbalizations (e.g., action description)
and also tend to verbalize utterances with negative sentiment, abnormally high or low pitch, or
low speech rate, among others [23]. This finding offers direct evidence to link users’ verbalization
and speech features to usability problem encounters. We hypothesize that it might be possible to
detect usability problem encounters by leveraging these subtle verbalization and speech patterns
during think-aloud sessions.

Recently, natural language processing (NLP) and machine learning (ML) technologies have be-
come increasingly powerful and are gradually adopted to tackle challenging problems in quali-
tative research [15]. For example, researchers have designed ML methods to automate or semi-
automate qualitative coding [38, 53, 54] to detect potential disagreements in qualitative coding
between coders [10] and to generate human-understandable explanations that reveal AI’s internal
states [20]. Inspired by this line of research, in this work, we focused on the domain of usability
testing and took the first step to design and evaluate computational methods to automatically de-
tect usability problem encounters in think-aloud usability test sessions. Furthermore, inspired by the
finding that links users’ verbalization and speech features to the encounters of usability problems
[23], we also sought to examine whether the verbalization and speech features that tend to occur when
users encounter usability problems [23] could be used to improve the detection of usability problem
encounters.

To answer the above research question, we first conducted and recorded think-aloud sessions,
labeled the encounters of the usability problems, computed the verbalization and speech features,
and then trained and evaluated a wide range of ML models using different sets of features. We
further examined the effect of test products and users on the ML models’ performance. As the
first attempt to automate the detection of usability problem encounters in think-aloud usability
tests, our work calls out and sets a baseline for a set of technical and interactive intelligent user
interface design challenges for forging a symbiotic relationship between UX practitioners and
machine intelligence.

2 BACKGROUND AND RELATED WORK

2.1 Conducting Think-aloud Sessions

Think-aloud protocols are a widely used and highly valued usability testing method that is often
used in iterative design to help ensure that products work as intended [28, 42, 50]. The protocols
enable evaluators to identify usability problems encountered by potential users and gain insights
into their thought processes that cannot be obtained from mere observations [14, 49].

When using think-aloud, participants verbalize their thought processes while carrying out a
task. Participants’ verbalizations provide data to understand their thought processes. To ensure
that users’ verbalizations reflect their unaltered thought processes, Ericsson and Simon proposed
three guidelines for conducting think-aloud sessions: (1) use neutral instructions that do not re-
quest participants to verbalize any specific type of verbalization (e.g., explanation); (2) admin-
ister a practice session to help participants get familiar with verbalizing their thoughts; (3) keep
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interaction with participants to a minimum (e.g., only use a neutral “keep talking” token to remind
participants to think aloud if they fall into silence for a period of time) [22]. Fox et al. conducted
a meta-analysis of 94 studies between 1983 and 2009 that used think-aloud protocols and found
that thinking aloud had little or no effect on users’ performance if these guidelines were heeded.
In contrast, artificial changes in users’ behavior can happen if these guidelines were breached
[25]. For example, when users were explicitly asked to verbalize a specific type of content during
think-aloud sessions, their behavior changed [40]; when users were interrupted by questions from
the evaluators during think-aloud sessions, their behaviors were also altered [30]. Furthermore,
if users did not have a chance to practice thinking aloud, they often had difficulty to verbalize
their thought processes frequently [9]. As a result, we followed the three guidelines to conduct
think-aloud sessions to curate our dataset for detecting encounters of usability problems in this
work.

2.2 Analyzing Think-aloud Sessions

User-based evaluations, such as using think-aloud protocols, tend to facilitate the identification of
a higher number of problems than inspection-based methods, such as walk-through or heuristic
evaluation [34]. However, conducting and analyzing think-aloud sessions is often time-consuming
and labor-intensive [35, 39]. Furthermore, in practice, usability evaluators often face time pres-
sure [11, 43]. Consequently, they may choose to perform quick, instead of thorough and rigorous,
analysis [11, 43]. For example, Nørgaard and Hornbæk found that evaluators often use test notes
produced in test sessions instead of performing rigorous analysis on actual session recordings
[43]. This can miss potential usability problems. As a result, they urged the community to develop
techniques to support fast-paced analysis [43]. Kjeldskov et al. proposed an instant data analysis
method to identify problems from think-aloud test sessions [35]. Instead of focusing on identify-
ing as many potential problems as possible, the method emphasizes identifying the most critical
problems. Furthermore, the method requires collocated collaboration and brainstorming among
multiple evaluators (one as the test moderator, one as the data logger, and one as the moderator
for the brainstorming session). However, in practice, few UX practitioners had an opportunity to
analyze the same test session with others [24]. Motivated by this line of research, in this work, in-
stead of optimizing the manual analysis workflow, we sought to develop computational methods
to automatically detect usability problem encounters in think-aloud sessions.

2.3 Verbalizations and Speech Features and Usability Problems
in Think-aloud Sessions

To better understand the verbalizations (i.e., utterances) that users verbalized during think-aloud
sessions, Cooke segmented verbalizations in recorded think-aloud sessions into small segments
based on pauses between verbalizations as well as their meaning and proposed a coding scheme
to categorize verbalizations into four categories: Reading, Procedure, Observation, and Explanation
[14]. The Reading category refers to when the user reads words, phrases, or sentences directly from
the product or its instruction manual. The Procedure category refers to when the user describes
his/her current/future actions. The Observation category refers to when the user makes remarks
about the product, its instruction manual, or himself or herself; and the Explanation category refers
to when the user explains their motivation for their behavior. The four-category scheme was later
examined and confirmed by Elling et al. [21] and Hori et al. [32] on their datasets, respectively.
The categories were further extended by other studies [29, 57]. While Hertzum et al. broke down
the Observation category further into four fine-grained sub-categories (i.e., system observation,
redesign proposal, domain knowledge, and user experience) [29], Zhao et al. broke down the Ob-
servation category into three different sub-categories (i.e., expectation, positive experience, and
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negative experience) [57]. As a result, different categorization schemes proposed in the literature
can be mapped to Cooke’s four categories. Therefore, we adopted this scheme to categorize users’
verbalizations in this work.

Recently, Fan et al. took a first step further to examine whether there are patterns in users’
verbalization and speech features when they encounter problems. They found that users tend to
verbalize utterances of the Observation category more often than other categories or utterances of
negative sentiment when encountering problems; users also tend to raise questions (e.g., why, what,
how) or use negations (e.g., no, not) when encountering problems [23]. Furthermore, users also
tend to verbalize in an abnormally high or low pitch or abnormally low speech rate when encoun-
tering problems. Inspired by these verbalizations and speech features patterns that are indicative
of usability problems, we sought to examine whether these subtle patterns could be leveraged to
improve usability problems detection.

2.4 Computational Methods for Qualitative Research

Natural language processing (NLP) and machine learning (ML) methods have become increasingly
powerful. Although most of the work is driven primarily within computational fields to design
more effective algorithms for classification and clustering tasks, qualitative researchers have re-
cently begun to leverage NLP and ML methods for qualitative analysis. For example, Coding is an
important step in qualitative analysis, in which researchers comprehend and annotate texts with
descriptive labels called codes [16, 52]. However, coding is often arduous or even intractable for
large amounts of data [5, 33]. Recently, researchers have explored methods to automate or semi-
automate the coding process [38, 53, 54, 58]. Besides automating the coding process, Chen et al.
recently built ML models for each coder that can automatically code qualitative data and then
used these models to highlight potential disagreements/conflicts between coders so coders can
better focus on resolving potential disagreements/conflicts [19]. Furthermore, researchers have
also leveraged NLP and ML methods to generate explanations to express an AI agent’s internal
states into a natural language [10, 20]. Following the trend of using NLP and ML to tackle quali-
tative research problems, we focused on automating the analysis of think-aloud usability testing
sessions and answering the following research questions (RQs):

• RQ1: Can users’ verbalizations (i.e., utterances) during think-aloud sessions be used to detect
usability problem encounters?

• RQ2: Can the subtle verbalization and speech patterns that tend to occur when users encoun-
tered problems [23] be used to improve usability problem detection?

Furthermore, as UX practitioners typically focus on identifying problems for a specific product
to improve its user experience, it could be beneficial to build ML models for a product that can detect
usability problems encountered by a new user, because this would allow UX practitioners to leverage
the automatic detection results to speed up their analysis for a new user’s test data. Similarly, it
is not uncommon for a company to maintain a pool of volunteer testers whom they may contact
for testing different products to save the recruitment cost. Therefore, it could also be beneficial to
build an ML model for a user (e.g., a volunteer in the company’s volunteer testers pool) that can detect
the problems that the user may encounter when using a new product, because this would allow UX
practitioners to use the automatic detection results to help them identify usability problems with
a new product. As a result, we also sought to answer the following two research questions in this
work:

• RQ3: Can an ML model be built for a product using its existing users’ think-aloud data to
detect usability problems encountered by a new user when using the product?
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• RQ4: Can an ML model be built for a user using the think-aloud data of the products that the
user has interacted with to detect usability problems encountered by the same user when
using a new product?

3 AUTOMATIC DETECTION OF THE ENCOUNTERS OF USABILITY PROBLEMS

To answer the RQs, we first needed to curate a dataset of recorded think-aloud sessions. To do so,
we conducted and recorded think-aloud sessions, in which users used different types of products
(i.e., physical and digital products) in a controlled lab study. We then labeled the encounters of
usability problems as ground truth. We also labeled or computed verbalization and speech features
as input features for training a set of ML models. To better understand how different ML methods
fared in detecting the encounters of usability problems, we implemented and evaluated a wide
range of ML methods.

3.1 Think-aloud Data Collection

We recruited eight participants (four females and four males, aged 19–26), all of whom were native
English speakers, to participate in the think-aloud study. We recruited participants with diverse ed-
ucational backgrounds (e.g., biology, creative writing, neuroscience) to reduce the potential bias of
any particular educational background. The study was conducted in a quiet usability testing room
with no external noises. To ensure the recording quality of sound, we used a clip-on audio recorder
and asked participants to clip it on their clothes and position it close to their mouths. During the
study, participants were first given a device (i.e., an alarm clock) and a task (i.e., set the alarm at
a specific time) to practice thinking aloud while working on the task. After the practice session,
each participant was given two physical devices (i.e., a coffee machine and a universal remote con-
trol) and two digital websites (i.e., a national history museum website (HM) and a national science
and technology museum website (STM)) in a random order to work on while thinking aloud. All
participants had not used these specific products before the study. For each physical device, each
participant worked on tasks related to its main functions and had access to each device’s instruc-
tion manual. For each website, each participant worked on three tasks related to the websites’
primary functions. The order of the four test products was randomized. The details of the tasks
are listed in Table 1.

During the study, the moderator did not probe or interact with participants except reminding
them to keep talking if they fell into silence longer than 15 seconds. All think-aloud sessions were
audio-recorded. In total, 64 think-aloud sessions were recorded (each participant performed eight
sessions: one task for each physical device and three tasks for each website). The length of the
sessions ranged from 62 seconds to 1,255 seconds (M=360, SD=279). These think-aloud sessions
were used as the dataset for training and evaluating ML models.

3.2 Usability Problems Labelling

The think-aloud sessions were first manually transcribed into text to ensure their accuracy. Then,
two coders followed a similar approach used in previous work [14, 21] to divide each think-aloud
session recording into smaller segments to facilitate further annotation. The beginning and the
end of a segment was determined by pauses between verbalizations and the verbalization content
[14, 21]. Each segment could include single words, but also clauses, phrases, and sentences. For
each segment, two coders labeled independently whether the user experienced a problem (e.g.,
being frustrated, confused, or having trouble). Upon completion, they discussed to consolidate the
problem label (0 or 1) for each verbalization segment in the dataset, which was used as the ground
truth.
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Table 1. The Tasks for the Test Products (Two Physical Products and Two Digital Products)

Products Tasks
Coffee machine Program the coffee machine to make 2 cups of strong-flavored drip coffee

at 7:30 a.m.
Universal
Remote Control

Program the universal remote control to control a DVD player.

STM Your friend is an 8th-grade science teacher. She asks you to check if there
are any available school programs in April at the Science museum. Your
task is to find out whether any programs may be suitable for 8th-grade
students in April.

STM Your uncle has an 11-year-old child. One day, the child asks you a
question, “what is it like to be a scientist or an engineer?” You have heard
that the museum offers interactive presentations during which children
can interact with speakers, who are scientists. Thus, your task is to find
out if there is any such program in March for an 11-year-old child.

STM You are a college student and working on an assignment about early
telescopes. Your task is to obtain a photo of an instruction manual, which
is for an early telescope.

HM Your friend is a 7th-grade teacher. She is organizing a trip for 30
7th-grade students to the history museum. Your task is to help your
friend find an available program in March for 30 7th-grade students.

HM Your friend has a 4-year-old child and is planning to take him to the
history museum. Please help your friend find out the number of activities
that are appropriate for a 4-year-old child in March.

HM You are a graduate student and currently researching the topic of first
peoples in Canada. Your task is to search for an essay on the topic.

In total, there are 4,111 segments, including 483 problem segments and 3,628 non-problem seg-
ments. Here are a few excerpts from think-aloud sessions in which users used the coffee machine
to show what problem segments look like: “it’s no longer flashing, hmm, okay”; “Oh I see, so I was
actually trying to open a wrong thing”; “place the carafe [user was confused about the word ‘carafe’
and mispronounced it with a rising tone] on the warming plate with the lid on”; and “it’s showing
the same screen again.” Note that while the first two examples might be associated with negative
sentiments based on the words used, the last two were not clearly associated with any negative
sentiments. In contrast, in the third example, the user stuttered on the word “carafe” and raised
her tone toward the end of the word as if she were asking a question. This indicates that she was
confused about which component of the coffee machine the word referred to. In the last example,
the user slowed her speech down dramatically while verbalizing her thoughts and therefore there
were long pauses between words.

However, a verbalization segment might not be a problem segment even if it contains negative
words. For example, here is a non-problem segment: “Um length of warming time. Um, I wasn’t
really. . .Do I need a length of warming time? no. okay.” The user was reading, thinking, and ver-
balizing and quickly figured out that he did not need to set the warming time for the task. Note
that the punctuation marks were added to help with comprehension. In sum, inferring whether a
user encounters a problem needs to take many factors into consideration; keyword matching or
sentiment analysis alone would be insufficient.
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3.3 Basic Transcript-based Feature Extraction

We computed basic text features from the transcript of each verbalization segment in our dataset.
Specifically, for the transcript of each segment, we computed the TF-IDF (i.e., term frequency-
inverse document frequency) feature vector using the Scikit-learn [45] and computed the word
embedding vector using Tensorflow [1]. These vector representations and the ground-truth labels
of the usability problems were used together to train the ML models later.

3.4 Verbalization and Speech Features Extraction

Recent research has shown that users tend to verbalize the content of the Observation category,
negations, questions, and negative sentiment using abnormal pitches or speech rates when they en-
counter usability problems in think-aloud sessions [23]. Inspired by this finding, we aimed to eval-
uate whether these verbalization and speech features can be used to train ML models to better
detect usability problem encounters. Next, we describe how we manually labeled or automatically
computed the features as follows.

Verbalization Category: For each segment in the recorded think-aloud sessions, two coders
independently labeled it with one of the four verbalization categories (i.e., Reading, Procedure,
Observation, and Explanation) [14]. Upon completion, they discussed their labels to resolve any
conflicts. In the end, each segment was assigned a label to indicate its verbalization category.

To help readers understand the categories, we provide example excerpts of each category from
the think-aloud sessions in which participants used the coffee machine: “It says ‘you can program
the appliance to prepare drip coffee automatically’” (Reading); “I’m just going to put two spoons of
coffee” (Procedure); “I assume strong coffee just has a lot of scoops of coffee in it” (Observation); and
“Oh it flashed for a second, so I guess I’m supposed to hold it” (Explanation).

Negations: We designed a keyword-matching algorithm to determine whether users verbalized
a negation. The keywords were chosen based on a recent study [23] and contained the following
words: no, not, don’t, doesn’t, didn’t, and never. Thus, each segment was assigned a binary label to
indicate whether the user used a negation.

Questions: We also designed another keyword-matching algorithm to determine whether users
asked a question in each segment. The question keywords were chosen based on a recent study
[23] and contained the following words: what, which, why, how, and where. When transcribing
the think-aloud sessions, we did not consistently add or verify the accuracy of punctuation marks
and their positions. Unlike verbalizations (i.e., utterances), which were deterministic, punctua-
tion marks and their positions in verbalizations were dependent on contextual information and
interpretations of the transcribers. Consequently, the keyword-matching did not use punctuation
marks or require the question keywords to be the first word of a sentence, which would depend on
accurate interpretation of punctuation marks and their positions. After this process, each segment
was assigned a binary label to indicate whether the user asked a question.

Sentiment: For each segment in the recorded think-aloud sessions, two coders independently
assigned it with one of the three sentiment values (1 for positive sentiment; 0 for neutral sentiment;
and -1 for negative sentiment) by referring to the text transcription of the segment and listening
to the corresponding audio segment if deemed necessary by the coders. Afterward, they discussed
their labels to consolidate the sentiment labels for all segments.

Pitch: For the corresponding audio of each segment, we computed the participant’s funda-
mental frequency F0 (Hz) at the sampling rate of 100 Hz using praatUtil.calculateF0 function in
the praatUtil library [59], which interfaces with speech process toolkit Praat 6.0.13 [60] and uses
Praat’s Sound to Pitch function [61]. We set the frequency range to be 50–400 Hz to cover typical
male and female frequencies.
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Speech Rate: For the corresponding audio of each segment, we computed the speech rate by
dividing the number of words spoken in a segment by its duration. The number of words spoken
in a segment was counted based on the text transcription of the segment.

Abnormal Pitch and Speech Rate: To determine whether a segment contains abnormal pitch
or speech rate, we computed the mean and the standard deviation of the pitch and the speech rate
over the entire session recording and automatically labeled a segment as having abnormally high
or low pitch or speech rate if any value in the segment was two standard deviations higher or lower
than the mean value. As a result, each segment would have two labels to indicate whether it has
an abnormally high pitch or abnormally low pitch, respectively, and one label to indicate whether
it has an abnormally low speech rate.

3.5 ML Models

Recent research has shown the promise of ML in solving qualitative research problems. For exam-
ple, Support Vector Machines (SVM) have shown to be effective in helping qualitative researchers
code qualitative data [53, 54, 58], and Random Forests (RF) have demonstrated to be effective in
detecting segments of question-answer from classroom conversations [4] or classifying activities
in classroom discourse [51]. Therefore, we employed these two methods (i.e., SVM and RF) to de-
tect the usability problem encounters in this work. Additionally, the convolutional neural network
(CNN) and recurrent neural network (RNN) have shown to be promising on generic text classifica-
tion tasks [12, 37]. Thus, we also included CNN and RNN to understand how they fare in detecting
usability problem encounters on our dataset.

Specifically, we computed and used the TF-IDF vectors and the ground-truth labels of all the
segments in our dataset to train the RF and the SVM models and used the word-embedding vectors
and the ground-truth labels of all verbalization segments to train the CNN and the RNN models. We
referred these models trained on these generic text features (i.e., TF-IDF vectors, word-embedding
vectors) as the baseline.

To evaluate whether the six verbalization and speech features (i.e., category, sentiment, nega-
tion, question, pitch, and speech rate) can be used to improve the performance of these ML models,
we appended these six features to the end of the TF-IDF vector or the word-embedding vector of
each segment to construct the updated feature vectors. We then used these updated feature vec-
tors and the ground-truth labels of all segments to train the same set of ML models. By comparing
the performance of these updated models to the baseline, we were able to assess whether these
verbalization and speech features helped to improve the models’ performance.

We used the Scikit-learn library to implement the RF and SVM models and Tensorflow to im-
plement the CNN and RNN models. We used RandomForestClassifier in Scikit-learn with default
parameters for RF and LinearSVC in Scilit-learn with default parameters for SVM. We also used
default parameters in Tensorflow for the CNN and RNN models. Our CNN model had an embed-
ding layer followed by a convolution layer, a ReLU activation function, a max pooling layer, and
then a softmax layer. Our RNN model had an embedding layer followed by a dynamic RNN with
GRU cell, and a softmax layer. For both CNN and RNN models, we followed common practice and
examples provided in prior work [1, 26] and initialized the embedding variable with random val-
ues of uniform distribution in the range of [-1,1) using Tensorflow (tf) function tf.random_uniform
[62].

4 EVALUATION AND RESULTS

We performed cross-validation on the whole dataset (Section 4.1) to answer RQ1 and RQ2. We
then performed leave-one-user-out evaluations for each product (Section 4.2) to answer RQ3 and
leave-one-product-out evaluations for each user (Section 4.3) to answer RQ4.
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Fig. 1. The average F1-score of the ML models trained using the transcript feature only as the input or

using the transcript and one additional verbalization & speech feature (i.e., negation, category, question,

sentiment, pitch, and speech rate) together as the input and evaluated using 10-fold cross-validation on the

entire dataset.

4.1 The Effect of Verbalization and Speech Features and ML models on Usability
Problem Encounters Detection

Evaluations in this section aimed to answer RQ1 and RQ2. We trained ML models using TF-IDF
or word-embedding vector extracted from the transcript (i.e., users’ verbalizations) as the input
feature, which was referred to as the transcript feature. Furthermore, we trained the same set of ML
models using both the transcript features and one of the verbalization & speech features (Section 3.5)
as the input. We performed 10-fold cross-validation to evaluate the models and used F1-score as
the overall performance measure on the entire dataset. Figure 1 shows the result.

The average F1-score of the four ML models trained on the transcript feature was only .58
(SD=.07). In contrast, the average F1-score of the four ML models trained with the transcript feature
and one additional verbalization and speech feature was .62 (SD=.02). The increased performance
indicates that the verbalization and speech features helped to improve the performance. The SVM
models performed the best among all with the average F1-score of .70.

As each verbalization and speech feature was shown to improve the performance of the ML
models (Figure 1), we tested whether using all the verbalization and speech features together as
input would improve the performance of the models even further. We trained the ML models
using all the verbalization and speech features and the transcript feature (i.e., TF-IDF or word embed-
ding vector) together as the input and performed a 10-fold cross-validation on the entire dataset
again. Figure 2 shows the precision, recall, and F1-score of the ML models trained on the transcript
feature only and also the transcript feature and all the verbalization and speech features together,
respectively.

The average F1-score of the four ML models was .67 (SD=.06), which was higher than that of the
models trained with the transcript only (.58) or with the transcript feature and any one of the ver-
balization & speech features together (.62). This finding suggests that the verbalization and speech
features complement each other as the input feature for training ML models. Moreover, the abso-
lute difference between the precision and recall for RF, SVM, CNN, and RNN models when using
the transcript feature (i.e., TF-IDF) and all the verbalization & speech features together as the input
feature was .16, .06, .31, and .22, respectively. This result suggests that the SVM model had the
most balanced precision and recall compared to the other three models (i.e., RF, CNN, and RNN).

We used the transcript feature (i.e., TF-IDF or word-embedding) as the entire or part of the input
to train ML models so far. To further understand whether the verbalization and speech features alone
are sufficient to train effective ML models, we used only the six verbalization and speech features
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Fig. 2. The precision, recall, and F1-score of the ML models trained using the transcript feature only as the

input (the left half) and using the transcript + all the verbalization & speech features together as the input

(the right half) and evaluated using 10-fold cross-validation on the entire dataset.

Fig. 3. The average precision, recall, and F1-score of the ML models trained using only the verbalization &

speech features as the input and evaluated using 10-fold cross-validation on the entire dataset.

as the input vector to train the ML models and performed 10-fold cross-validation on the entire
dataset. Figure 3 shows the result, which suggests that the performance of the ML models trained
on only the verbalization and speech features was comparable to that of the same models trained
on both the transcript feature and the verbalization and speech features together (Figure 2, right).

To further understand how each verbalization or speech feature contributed to the precision,
recall, and F1-score of an ML model, we used each verbalization or speech feature as the input
feature, respectively, to train SVM models and performed 10-fold cross-validation on the entire
dataset. We used SVM for this evaluation, because it was the best-performed ML model based
on the evaluations so far. Figure 4 shows the results, which compare the performance of these
SVM models trained on each verbalization or speech feature, respectively, with that of the SVM
model trained with all the verbalization and speech features together. The differences in precision
and recall values demonstrate that each verbalization or speech feature had different precision and
recall trade-off for locating usability problems. For example, the sentiment and the negation features
had a relatively higher precision, while the category, pitch, and speech rate features had a relatively
higher recall. Furthermore, the overall performance (i.e., F1-score) of the SVM model performed
the best when trained on all the verbalization and speech features together. This suggests that the
verbalization and speech features are complementary to each other for detecting usability problem
encounters.
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Fig. 4. The precision, recall, and F1-score of the SVM models trained with each verbalization or speech

feature, respectively, and together and evaluated using the 10-fold cross-validation on the entire dataset.

Fig. 5. The average precision, recall, and F-1 score of the SVM model trained on any seven users’ data using

the transcript (i.e., TF-IDF) + all the verbalization & speech features together as the input and evaluated on the

rest one user’s data for each product, respectively (i.e., leave-one-user-out scheme).

4.2 The Effect of Products on Usability Problem Encounters Detection

To reduce the workload of analyzing large amounts of users’ think-aloud usability test sessions
for a product, it is valuable to explore whether an ML model trained on existing users’ test sessions
can predict the usability problems of new users’ test sessions.

To answer this question, we adopted the leave-one-user-out scheme to train and evaluate an
SVM model for each product. We used SVM for the evaluation, because it performed best among
all the models in terms of F1-score and had balanced precision and recall values. For each of the
four products, we trained an SVM model using the transcript (i.e., TF-IDF) + verbalization & speech
features together as input on any seven users’ data and then tested the model using the rest one
user’s data. The rest one user was used to simulate the new user whose data the SVM model did
not use in the training. As each product was used by eight users in our dataset, we repeated this
evaluation process eight times so each user was treated as the new user once for each product.
Finally, we averaged the three measures (i.e., precision, recall, F1-score) of the SVM models across
all eight users for each product.

Figure 5 shows the average precision, recall, and F1-score of the SVM models for each product
when using the transcript feature (i.e., TF-IDF) and the verbalization and speech features together as
the input. The result shows that it is possible to detect the usability problems encountered by a new
user for a product with reasonable precision, recall, and F1-score. In addition, the average F1-score
of the SVM models for two physical devices and two digital websites were .74 and .68, respectively,
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Fig. 6. The average precision, recall, and F-1 score of the SVM model trained on any three products’ data

using the transcript (i.e., TF-IDF) + all verbalization & speech features together as input and evaluated on the

rest one product’s data for each user, respectively (i.e., leave-one-product-out scheme).

which indicates that the models performed relatively better for the two physical devices than for
the two digital websites.

4.3 The Effect of Users on Usability Problem Encounters Detection

It is not uncommon for companies to maintain a pool of participants whom they could contact
over time for usability testing to reduce the recruitment cost. Thus, it is possible for companies to
accumulate a dataset of the same user interacting with various products. If an ML model could be
built to predict when a user would encounter problems while interacting with a new product using
the thinking-aloud data of this user when she interacted with existing products with reasonable
accuracy, then this ML model could potentially help UX evaluators speed up their analysis of
think-aloud sessions for the new product. With a dataset of a user interacting with four different
products, we were curious and able to explore whether it is possible to build an ML model for a
user using the data of the products that the user has already interacted with to detect potential
usability problems that the same user might encounter when she uses a new product.

To answer this question, we adopted the leave-one-product-out scheme to train and evaluate the
ML model for each user, respectively. We used SVM again, because it performed the best among
all ML models in terms of F1-score and had balanced precision and recall values. For each user in
our dataset, we trained an SVM model for the user using the transcript (i.e., TF-IDF) + verbalization
& speech features together as input on any three of the four products’ data and tested the model
on the rest one product’s data. The rest one product was used to simulate the new product that
the user used but the ML model did not use for training. As each user used four products in our
dataset, we repeated this process four times so each product was used as the new product once for
each user. Finally, we averaged the measures across all the products for each user. Figure 6 shows
the result. The F1-scores of the SVM models for the eight users ranged between .47 and .66. The
performance was relatively better for some users (e.g., users 6, 3, 1, and 2) than others (e.g., users
4 and 7).

4.4 The Effect of Product & User Combinations on Usability
Problem Encounters Detection

It is also valuable to understand how well an ML model trained on an existing set of products and
users would perform on the data of a new user when she uses a new product. In other words, the
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Fig. 7. The precision, recall, and F1-score of the SVM model trained on seven users and three products’ data

using the transcript (i.e., TF-IDF) + all the verbalization & speech features together as the input and evaluated

on the combination of the remaining one user and the remaining one product’s data (i.e., leave-one-user-one-

product-out scheme).

research question (RQ5) is: Can a pre-trained ML model using an existing dataset be used to predict
usability problems that would be encountered by a new user when she uses a new product?

To answer this question, we adopted the leave-one-user-and-one-product-out scheme to train
and evaluate the ML model. Specifically, we trained SVM models using the dataset of seven users
and three products and used the remaining one user’s remaining one product data for testing.
There are 32 (4 * 8) combinations of products and users. As many of these combinations have
similar setups and would likely result in similar performance, we decided to evaluate only four
potential boundary conditions: the best and worst performed products as determined in Section 4.2
(i.e., universal remote control and science museum website) combined with the best and worst
performed users as determined in Section 4.3 (i.e., user 6 and user 4). Specifically, for each of the
four user and product combinations, we used the data of the remaining users and products to train
the models and test on the data of the combination. Figure 7 shows the result.

5 DISCUSSION

5.1 The Effect of the Verbalization and Speech Features on the Detection of Usability
Problem Encounters

The results in Figure 1 and Figure 2 confirm that the verbalization and speech features that were
found to be indicative of usability problems in Fan et al.’s studies [23] can be used to improve the
detection of usability problem encounters when used with the transcript features (i.e., TF-IDF or
word embedding). The potential reason might be that users tend to verbalize their thoughts in
similar ways when they encounter problems in think-aloud sessions, and these similarities can be
reasonably captured by these verbalization and speech features.

Furthermore, the result in Figure 3 demonstrates that the verbalization and speech features can
be used to train effective ML models to detect usability problem encounters without needing to
be used with the generic transcript features (i.e., TF-IDF or word-embedding). It implies that the
verbalization and speech features that were found in Fan et al.’s studies [23] are informative and
comprehensive to capture the key characteristics of usability problem encounters in think-aloud
sessions.

In addition, the performance of SVM models trained with each verbalization or speech feature,
respectively, (Figure 4) suggests that different verbalization and speech features helped differently
in terms of improving precision and recall when detecting usability problem encounters. This
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Fig. 8. The precision, recall, and F1-score of the SVM models trained using all the transcript + verbalization

& speech features except one as the input and evaluated using 10-fold cross-validation on the entire dataset.

result meets our expectation, because users tend to show a rich set of honest signals ranging from
using negative words, raising their tones, to slowing down their speech rates when encountering
problems, as the example problem segments shown in Section 3.2. Such a rich set of signals could
be better captured by different verbalization and speech features together than any individual
one. This is evident by the fact that the SVM model performs the best when trained with all the
verbalization and speech features together than trained with any individual verbalization or speech
feature (Figure 4).

Although verbalization and speech features are most effective when they are used together to
train an ML model, getting some of these features, such as Category, required manual annotation
at the current stage. To better understand whether some manual annotation effort can be saved, it
is worth exploring whether removing one feature while training an ML model would affect its per-
formance. For each verbalization or speech feature, we trained an SVM model with all transcript
and verbalization and speech features except that feature and performed a 10-fold cross-validation
on the entire dataset. The result (Figure 8) shows that removing one feature from the transcript +
all verbalization and speech features does not seem to affect the performance much. This is en-
couraging, because it suggests that it might be possible to save effort by not labeling one feature
if all other features are available when building an ML model to detect usability encounters. How-
ever, further research is needed to examine whether this finding still holds with a more diverse set
of products and a larger group of think-aloud participants.

5.2 Trade-offs between Precision and Recall of the Verbalization and Speech Features

We have used F1-score to compare the performance of ML models trained with different features,
because the F1-score is often used to estimate the overall performance of a classifier. However,
the results in Figure 2, Figure 3, and Figure 4 suggest that different ML models and even the same
ML model trained with different features perform differently in terms of precision, recall, and F1-
score. No single method performs the best for all measures. The implication for future automatic
detection of usability problems is that instead of hoping to build a single ML model that performs
the best in all measures (i.e., precision, recall, and F1-score), it might be more practical to develop
ensemble methods (e.g., References [7, 17]), which can combine different ML models that have an
edge in different measures together to achieve better performance.

Moreover, Precision and Recall emphasize different aspects of the performance of an ML model.
A recent study that aimed to understand whether users would accept an imperfect Artificial

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 2, Article 16. Publication date: May 2020.



Automatic Detection of Usability Problem Encounters in Think-aloud Sessions 16:15

Intelligence (AI) [36] suggests that users indeed value precision and recall of an AI agent dif-
ferently. Consequently, the precision and recall measures should be weighted differently when
determining which verbalization and speech features to use for training the desired ML model.
For example, if usability evaluators wish to train an ML model that captures as many potential
problems as possible for them to review and have a higher tolerance for false positives, then the
recall measure should be weighted more than the precision measure. As a result, the verbaliza-
tion and speech features that could lead to high recall should be preferred. In our case, Figure 4
shows that the pitch, speech rate, and category features should be prioritized over other features.
In contrast, if usability evaluators wish to train an ML model that captures potential problems
as accurately as possible and can care less about missing a potential problem, then the precision
measure should be weighted more than the recall measure. In our case, Figure 4 shows that the
sentiment and negation features should be prioritized over other features.

This recommendation, however, would require UX practitioners to make trade-offs between Pre-
cision and Recall when choosing an ML model to assist them with identifying usability problems.
However, this can be challenging, because UX practitioners are often not ML experts and lack the
knowledge needed to make an informed decision. Therefore, it remains unknown how to assist
UX practitioners to choose an ML model that balances between Precision and Recall. Perhaps, one
potential approach is to design an interactive user interface that allows UX practitioners to tune
their desired Precision and Recall values/ranges, for example, by dragging sliders, and provides
visual feedback of the potential problems that the underlying ML detects.

5.3 The Effect of Different Types of ML Models on the Detection
of Usability Problem Encounters

Given the overwhelming evidence of the advantage of deep neural networks (DNNs) over the
traditional ML methods, one might expect that the CNN and RNN models would outperform the
SVM and RF models. The results in Figure 1 and Figure 2, however, show that SVM models worked
better than the other three models, including the two deep learning models, in terms of the F1-
score. This could potentially be because the DNNs had more parameters to optimize than the two
simple models (i.e., SVM, RF) but our dataset was relatively small and insufficient for the DNNs to
learn their optimal parameters.

To better leverage the power of DNNs, one potential approach is to develop methods to ef-
fectively curate a larger dataset that would allow the DNNs to learn their optimal parameters.
However, curating large datasets in the usability testing domain is challenging in practice, be-
cause scheduling and conducting usability studies (e.g., think-aloud sessions) with participants in
a controlled lab environment is often labor-intensive and time-consuming. However, one potential
opportunity to gain large amounts of usability testing sessions is through remote usability testing,
in which users can participate remotely in their convenient environment without the burden of
scheduling and coming to the lab. Remote usability testing is promising also because it has shown
to be cost-benefit effective (e.g., References [6, 8]). For example, Andreasen et al. showed that re-
mote synchronous usability testing is virtually equivalent to the conventional lab-based controlled
user studies [3]. However, one limitation with remote usability testing is that it would be challeng-
ing if users need to access and interact with a physical product. Another challenge with curating
a large dataset lies in transcribing and annotating the test sessions and consolidating the ground-
truth labels for usability problems. In this work, researchers took the burden of completing these
steps. However, future research should develop better tools and methods that either facilitate UX
professionals to label the dataset efficiently or automate or semi-automate the labeling process,
such as via crowdsourcing.
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5.4 The Effect of Products on the Detection of Usability Problem Encounters

Our leave-one-user-out evaluations for each product (Section 4.2) demonstrate that it is possible
to build an ML model for a product to detect problems that a new user encountered when using the
product. The implication is that companies could utilize recorded think-aloud test sessions that
they have collected so far for a product to train an ML model to process the think-aloud sessions
of a new user to pinpoint where in the sessions the new user encounters problems.

The leave-one-user-out evaluation results also show that the performance of the models was
relatively better for the physical products (with the average F1-score of .74) than for the digital
websites (with the average F1-score of .68). One potential reason for the difference might be the
natural difference in the utterance of the users when using physical and digital products. Another
possibility might be related to the type of tasks that users worked during the tests. For the physical
products, users worked on guided tasks, because they had access to the instruction manuals, which
offer a prescribed set of steps to complete the tasks. In contrast, for digital websites, users worked
on unguided tasks, because they had no access to any prescribed steps. Although users can deviate
from the prescribed steps when working on guided tasks, the availability of the guided steps could
have influenced users’ usage patterns and caused them to verbalize more similar utterances than
when they were working on the unguided tasks with digital products, for which they must freely
explore to complete the unguided tasks. However, further research should examine whether and
how the type of tasks that users work on during think-aloud sessions influence their verbalizations
and its implications on the design of effective ML models for detecting usability problems.

5.5 The Effect of Users Models on the Detection of Usability Problem Encounters

Our leave-one-product-out evaluation for each user (Section 4.3) demonstrates that it is possible
to build an ML model for each user using the data of the user interacting with existing products
to detect problems that the user might encounter when using a new product. However, the result
also shows a large variation in models’ performance for different users. One potential reason for
the variation in users’ performance could be that different users may have verbalized the usability
problems they encountered to different extents. Some users’ verbalizations reflected the problems
that they encountered more explicitly in their utterances than other users. Another potential reason
for the variation in the performance could be that some users may have verbalized their thought
processes more consistently across products than other users. This consistency in their verbaliza-
tions may have helped the ML model learn and generalize. However, further research is needed to
fully understand what affects the performance of such user-dependent models.

5.6 Integrating Machine Intelligence into UX Practitioners’ Workflow

Although some recent research has shown that UX practitioners often struggle to understand the
capabilities and limitations of ML [18, 56], some also suggest UX practitioners can design ML-
enhanced products without knowing about ML thoroughly [55]. This is encouraging, because it
suggests that it is possible to integrate machine intelligence, such as the automatically detected
encounters of usability problems as described in this work, into UX practitioners’ workflow to
improve their analysis efficiency. Toward this goal, we highlight two possible directions to forge
a successful symbiosis relationship between UX practitioners and machine intelligence.

First, it is beneficial for UX practitioners to have a second perspective on their analysis to reduce
the potential “evaluator effect” [31]. Unfortunately, in practice, fewer than 30% of the UX practi-
tioners had a chance to work with another practitioner to analyze the same usability test session
due to many practical constraints [24]. As this work shows that ML models can achieve reasonable
accuracy in detecting usability problem encounters, it might be possible to use the ML models as
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Table 2. The Accuracy, Precision, Recall, and F1-score of the Two-class

(i.e., Observation and Non-Observation) and Four-class (i.e., Reading,

Procedure, Observation, and Explanation) Category Classifiers

Accuracy Precision Recall F1-score
Two-class classifier .83 .86 .71 .78
Four-class classifier .75 .78 .64 .68

“virtual evaluators” to provide a second perspective to UX practitioners so they could spot prob-
lems that they would have missed otherwise. To fulfill this vision, future research must overcome
many intelligent interactive user interface design challenges, such as how should the user interface
be designed so UX practitioners could trust the “virtual evaluator” and better leverage its detection
results into their analysis?

Second, previous research has argued and demonstrated that machine intelligence can benefit
from users’ input over time [2, 27, 41]. Similarly, we hypothesize that ML models could detect
the encounters of usability problems more accurately with input from UX practitioners, such as
correcting the ML’s detection results that are deemed to be wrong. However, such mixed-initiative
human-in-the-loop designs must be carefully considered. For example, if ML models keep getting
corrected by a UX practitioner, these models might be biased by this user’s input and behave more
and more like the UX practitioner, which may not be able to help the UX practitioner overcome her
confirmation bias anymore. Further research should examine how to design an interactive interface
that allows UX practitioners to not only leverage the ML’s detected encounters of usability problems
but also conveniently provide their feedback to the ML without biasing it in the long run.

5.7 Automatic Verbalization Category Labelling

We aimed to understand the effect of users’ verbalization and speech features in think-aloud ses-
sions on the detection of usability problem encounters. As a result, we chose to label the verbal-
ization category for each segment in the dataset manually to ensure the label’s accuracy. Since
our evaluations show that the verbalization category is useful in improving the performance of
the ML models, we took a step further to answer the following research question (RQ6): Can the
verbalization category for a segment be determined automatically based on the verbalized text content
(i.e., the words that users uttered)?

Informed by the findings of the recent research that the Observation category is most indicative
of the usability problems among all the four categories [23], we sought to build a binary classifier
to detect whether a segment should be labeled as the Observation category or the non-Observation
category. To answer this question, we went through the category labels for all the verbalization
segments and grouped the Reading, Procedure, and Explanation categories into the non-Observation
category but kept the Observation label unchanged. We then followed the same procedure as de-
scribed in Section 3.4 to compute the TF-IDF feature for each segment as the input feature and used
the binary verbalization category labels as the ground truth to train an SVM classifier to classify
whether a segment should be labeled as Observation or Non-Observation.

We performed 10-fold cross-validation on the SVM classifier using the entire dataset. The accu-
racy, precision, recall, and F1-score of the binary classifier were .83, .86, .71, and .78, respectively
(i.e., the first row in Table 2). The result implies that it is possible to reduce the effort of manually
labeling the verbalization category, especially for large amounts of think-aloud sessions, by build-
ing a binary-class category classifier. Of course, to create such a classifier, UX practitioners still
need to label a small portion of their data to curate the training data.
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Table 3. The F1-score of the Four ML Models for Detecting Usability

Problem Encounters When Trained with Transcript + Automatically

Generated Category Labels (Bottom Row) and Trained with Transcript +

Manually Generated Category Labels (Upper Row)

RF SVM CNN RNN
Transcript + manual category labels .65 .66 .57 .49
Transcript + automatic category labels .70 .65 .43 .55

Although the binary verbalization classifier might be enough for usability problem encounter
detection, the other three verbalization categories (i.e., Reading, Procedure, Explanation) could be
useful in terms of providing contextual information to understand the issues that may ultimately
be verbalized in an Observation segment [23]. Thus, it is also valuable to distinguish the four
verbalization categories (i.e., Reading, Procedure, Observation, and Explanation).

We further trained an SVM classifier to detect the four verbalization categories and performed
a 10-fold cross-validation on the entire dataset. The average accuracy, precision, recall, and F1-
score of the four-class classifier were .75, .78, .64, and .68, respectively (Table 2). Although the
measures for four-category classification, as expected, are lower than those of the binary verbal-
ization category classifier, the measures are nevertheless still promising. Future work may explore
more effective methods to improve the performance of the verbalization category detection, for
example, by creating more effective input features or ML models.

One natural follow-up research question (RQ7) is: How well could the automatically detected
category labels be used to detect usability problem encounters compared to the manually labeled cat-
egory labels? To answer this question, we used the transcript and the automatically generated
category labels (with four categories) as input features to train the four types of ML models to
detect usability problem encounters and performed 10-fold cross-validations on the entire dataset.
Table 3 shows the result. For easy comparison, Table 3 also includes the corresponding result (i.e.,
transcript + manually labeled category labels) taken from Figure 1. The result suggests that the
performance of the ML models was not always worse or better when using automatic category la-
bels than manual category labels. Specifically, the performance of the ML models using automatic
category labels was better than manual category labels in some models (e.g., RF, RNN) but worse
in others (e.g., SVM, CNN). This result implies that it is possible to further automate the entire
process of usability problem detection, such as automating the verbalization category labeling.

5.8 Summary of the Key Findings

Our evaluations have identified the following key findings: First, ML models trained on the generic
transcript feature (i.e., TF-IDF or word embedding) can detect usability problem encounters. Sec-
ond, the verbalization and speech features that were found to be indicative of usability problems
in Fan et al.’s research [23] were able to improve the ML models’ performance. Furthermore, the
ML models achieved the best performance when using all the verbalization and speech features
together. Third, compared to the other three ML methods, SVM performed the best in terms of F1-
score and had the most balanced precision and recall values. However, the other three ML methods
outperformed SVM in precision or recall measure separately. Fourth, ML models trained on the
existing users’ data for a product can detect the encounters of usability problems by a new user
when the user uses the product. Fifth, ML models trained on the data of the products that a user
has interacted with can detect the encounters of usability problems when the user uses a new
product. Last, ML models can be built to label the verbalization Category feature with reasonable
accuracy.
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5.9 Limitations and Future Work

As a first step toward automating the detection of usability problem encounters in think-aloud
usability testing, our work sets a baseline. Future work could explore more advanced computational
methods to improve the detection accuracy. Besides, we have identified the following directions
for future work.

First, our work focused on detecting the encounters of usability problems, the period when users
encountered problems. The ML models we built and evaluated in this work, however, are not able to
provide the details about the problems. For example, the ML models do not know what problems
users encountered, the causes of the problems, the severity of the problems, and the potential
design solutions to the problems. Therefore, the ML models in this work could act as an assistant
to UX evaluators to locate the problems effectively but would still rely on UX evaluators to interpret
the problems. Future work should explore ways to help UX evaluators assess the aforementioned
details about the automatically detected usability problems.

Second, our dataset contained 64 think-aloud sessions in which eight participants used four
products. Although the dataset included multiple users and multiple products, it was still relatively
small. This could be a reason why the data-intensive models, such as CNN and RNN, did not
outperform shallow-learning methods, such as SVM and RF. Future work should curate a larger
think-aloud dataset, which includes a larger number of participants and a more diverse set of
products, to reassess the performance of ML models and understand whether deep neural networks
can achieve better performance. However, conducting think-aloud sessions in a controlled lab
environment is labor-intensive and time-consuming. One potential solution is to conduct remote
usability testing, which does not require users to be physically present in a lab and therefore allows
for recruiting a more diverse set of participants around the world.

Third, our evaluations show that it is possible to build an ML model for a specific product using
its existing users’ data to detect the problems encountered by a new user. The performance of
such models, however, still has room to improve. Future work should examine how to build more
effective ML models to detect usability problem encounters.

Fourth, our evaluations suggest that the types of tasks that users perform in think-aloud sessions
might have influenced the models’ performance. For example, the guided tasks, which were used
for physical devices and provided instruction steps for users, might have resulted in higher levels
of similarity in users’ verbalizations than the unguided tasks, which were used for digital websites
and provided no instructions about how to complete the tasks. Future work should further examine
whether the type of tasks indeed affects the detection of usability problem encounters.

Fifth, our evaluations also suggest that although ML models can be built for each user to de-
termine the potential problems that the user might encounter when using a new product, the
performance of these user-dependent models varied across users. Future work should examine
what causes this difference and design methods that can work better for each user.

Sixth, different languages have different pronunciations and grammars to organize and commu-
nicate thoughts and are influenced by different cultures. For example, a field study of think-aloud
testing in seven companies in three different countries (i.e., Denmark, China, and India) suggested
that the way usability problems are experienced by test participants can be different [13]. Sim-
ilarly, Shi conducted a field study with companies located in the industrial areas in China and
found that Chinese participants tend to have difficulty verbalizing their higher levels of thinking,
which might be due to the Chinese holistic thinking style [47]. Thus, if these subtle patterns were
to be used to build ML models to detect usability problems for other languages, it is necessary to
examine whether the subtle verbalization and speech patterns that tend to occur when users encounter
problems are affected by the languages and the cultures in which the think-aloud participants live.
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Seventh, all our participants were young adults. Recent research has suggested that age might
have an influence on think-aloud usability testing in terms of task performance and efficiency [44,
48]. As a result, one interesting research question is to study whether the verbalization and speech
features extracted from older adults’ think-aloud sessions can still be used to build effective ML models
to detect when older adults encounter usability problems.

Eighth, because the primary goal of this research was to understand if the verbalization and
speech features identified in recent research [23] can be used to improve the automatic detection
of usability problems, we did not optimize the parameters for each ML model (i.e., using default
parameters) but rather focused on comparing the performance of the same type of ML models
trained with and without the verbalization and speech features. However, the performance of each
model can likely be improved by fine-tuning its parameters. For example, we initialized word
embedding layer variables with random values from a uniform distribution for CNN and RNN
models following common practice and examples from prior work [1, 26]. However, pre-trained
word embedding, such as word2vec or GloVe embedding, and customized embedding trained on a
similar dataset to ours might be able to improve the performance of CNN and RNN models.

Last, our approaches to determining verbalization and speech features can be further improved
as well. For example, when determining if a user raises a question, we did not use punctuation
marks. Further work might examine how to accurately determine punctuation marks, such as us-
ing automatic sentence boundary detection (e.g., Reference [46]) and speech-related features (e.g.,
raising tone), to better detect whether users ask questions. Additionally, we did not include words
(e.g., do, does, will, shall) that are often used to raise polar questions in the question keywords list,
because these words are not always used to raise questions and would require additional contex-
tual information to determine whether they are indeed used to raise a question. Part-Of-Speech
(POS) tags can be useful contextual information to help determine if such words are used to raise
polar questions in conjunction with the keyword matching approach. In sum, it is worth exploring
more sophisticated methods to better detect verbalization and speech features.

6 CONCLUSION

Fast-paced methods for analyzing recorded think-aloud sessions are needed to help UX evaluators
leverage the benefit of large amounts of usability test sessions, which can be collected via remote
usability testing. In this work, we took the first step to design and evaluate computational meth-
ods to automate the detection of the usability problem encounters in think-aloud test sessions. Our
evaluations show that when using the verbalization and speech features (i.e., category, sentiment,
question, negation, abnormal pitch, and abnormal speech rate) that are shown to be indicative of
usability problems in recent research [23] as the input, the four types of ML models performed bet-
ter compared to only using the generic text feature (i.e., TF-IDF or word embedding) as the input.

Furthermore, our evaluations show that it is possible to build an ML model for a product using
its existing users’ data to detect the usability problems encountered by a new user; it is also possible
to build a user-dependent ML model for a user to detect usability problems encountered by the user
when she uses a new product. As ML models achieved reasonable accuracy in detecting usability
problem encounters, it is possible to examine how to leverage such models as “virtual evaluators”
to provide a second perspective to UX practitioners in the future. Our evaluations also suggest
that the types of tasks that users perform during think-aloud sessions may affect the models’ per-
formance. Future work should examine whether the type of tasks (i.e., guided and unguided tasks)
used in think-aloud sessions and the difference in user’s verbalization behavior affect the detection
of usability problem encounters.

As the first step toward automating usability problems detection, our work focused on lever-
aging users’ verbalization and speech features to detect the encounters of usability problems and
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set a baseline for several technical and user interface design challenges that aim to integrate ma-
chine intelligence into UX practitioners’ workflow to forge a sustainable symbiotic relationship.
Future work should examine whether other streams of data, such as users’ gaze-tracking data, fa-
cial expressions, actions on the interface, or physiological measures (e.g., galvanic skin response,
heartbeat) are informative sources for detecting the encounters of usability problems and whether
these streams of data can be used together with verbalization and speech features to further im-
prove machine intelligence. Additionally, future work should consider how to design interactive
intelligent user interfaces (IUIs) that leverage ML models that can detect usability problem encoun-
ters with reasonable but imperfect accuracy to support UX practitioners to analyze usability test
sessions more effectively and also the IUIs that would allow UX practitioners to correct errors made
by the machine intelligence interactively to improve its performance. Last, this work focused on
detecting the encounter of usability problems but not the details about the problems. Future work
could further investigate methods to infer the details about the problems, such as the description
of the problems, the severity of the problems, and the potential solutions to the problems.
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