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ABSTRACT 
We present ShadowTouch, a novel sensing method to recognize the 
subtle hand-to-surface touch state for independent fngers based 
on optical auxiliary. ShadowTouch mounts a forward-facing light 
source on the user’s wrist to construct shadows on the surface in 
front of the fngers when the corresponding fngers are close to the 
surface. With such an optical design, the subtle vertical movements 
of near-surface fngers are magnifed and turned to shadow features 
cast on the surface, which are recognizable for computer vision 
algorithms. To efciently recognize the touch state of each fnger, 
we devised a two-stage CNN-based algorithm that frst extracted 
all the fngertip regions from each frame and then classifed the 
touch state of each region from the cropped consecutive frames. 
Evaluations showed our touch state detection algorithm achieved a 
recognition accuracy of 99.1% and an F-1 score of 96.8% in the leave-
one-out cross-user evaluation setting. We further outlined the hand-
to-surface interaction space enabled by ShadowTouch’s sensing 
capability from the aspects of touch-based interaction, stroke-based 
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interaction, and out-of-surface information and developed four 
application prototypes to showcase ShadowTouch’s interaction 
potential. The usability evaluation study showed the advantages of 
ShadowTouch over threshold-based techniques in aspects of lower 
mental demand, lower efort, lower frustration, more willing to use, 
easier to use, better integrity, and higher confdence. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile de-
vices; Gestural input. 
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1 INTRODUCTION 
Gestural interaction with bare hands is becoming an essential 
modality for the latest mixed reality (MR) interfaces [35]. Among 
the vast hand interaction space in mixed reality, touch interaction 
with a rigid physical surface serves a unique and signifcant role be-
cause such an input modality is most similar to the widely-adopted 
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Figure 1: An example VR usage scenario enabled by Shad-
owTouch. (a) The user is sitting at a desk and browsing a 
photo album in VR environment. (b) With ShadowTouch, 
the user can turn the physical surface into a multi-touch 
interface, and perform a thumb-index multi-stroke gesture 
with aligned haptic feedback to make transformations of the 
photo. 

touchscreen or touchpad interface and provides perfect tactile feed-
back [25] that helps to reduce fatigue [11, 25] and improve input 
efciency [2, 3, 10, 26]. 

To enable rich hand interaction for mixed reality, vision-based 
hand tracking, as the fundamental sensing capability, has been 
extensively researched in the computer vision area. Although state-
of-the-art commercial products (e.g., Microsoft Hololens 2 [16] 
and Oculus Quest 2 [18]) have demonstrated some potential of 
their hand tracking system in sensing pose-driven gestures, the 
sensing capability is still restricted in both spatial and temporal 
resolution [14], especially for the near-surface scenarios where 
the fnger touches are fast and subtle. For example, a transient 
fnger-to-surface touch event would hardly be distinguished from 
a false positive (e.g., pretending to touch) through a commercial 
camera system because a touch event typically happens within 100 
milliseconds with a submillimeter spatial resolution (e.g., touch v.s. 
slight hovering) [46] so that the camera failed to distinguish the 
touch state between the fnger and the surface. 

Aiming at this challenge, previous work leveraged complemen-
tary channels, such as the inertial signal (captured by IMUs), to 
detect either touch events (one-fnger [14] or multi-fnger [35]) or 
touch states (one-fnger [46]) by capturing the micro-vibration sig-
nal yielded from fnger touches. Here we emphasize the diference 
between a touch event and a touch state - the former means a tran-
sient "clicking" event involving a touch-down and a touch-up phase 
while the latter means whether a certain fnger contacts with the 
surface at a certain moment. Typically, detecting the touch state is 
known as a much harder task since it decouples the touch-down and 
touch-up phases [46], where touch-downs are more recognizable 
and touch-ups are implicit to the inertial signal. 

In this paper, we aimed to recognize the subtle touch states of 
independent fngers, which is the fundamental sensing goal for 
hand-to-surface interaction, from a unique perspective by con-
structing an optical auxiliary. We presented ShadowTouch, a novel 
vision-based sensing technique to recognize subtle fnger-to-surface 
touch states by actively constructing recognizable optical features 
to magnify the subtle fnger movement near the surface. To achieve 

this goal, ShadowTouch mounts a forward-facing light source on 
the wrist to cast shadows of fngers onto the near surface, turning 
the subtle vertical movement of the fngers into amplifed shadow 
features on the surface, as shown in Figure 1. Such an optical design 
is well complementary to vision-based hand tracking, reusing the 
camera channel to achieve subtle near-surface fnger movement 
sensing. 

The key of ShadowTouch is to construct high-quality and rec-
ognizable shadow features, so we frst conducted an analysis on 
the optical principles of how the shadows were yielded and what 
characteristics good shadows should meet, outputting three main 
goals - sufcient magnifcation, recognizable contrast, and rich ges-
ture space - for the target shadows. Then we justifed our design 
considerations regarding the hardware form and hyperparameters 
to fnalize our hardware design. 

After acquiring recognizable shadow features, we devised a light-
weight two-stage CNN-based model to recognize the touch states 
of independent fngers. Our model frst extracted the boundaries of 
fngertip regions with dynamic sizes and then classifed the cropped 
frame series within a short period to acquire the touch state for 
each fnger. The evaluation showed our algorithm pipeline achieved 
an average accuracy of 99.0% and an F-1 score of 96.7% for touch 
state recognition using a 5-frame window in the cross-user setting. 

To demonstrate ShadowTouch’s applicability, we discuss the 
hand-to-surface interaction space enabled by ShadowTouch’s sens-
ing capability from the aspects of touch-based interaction, stroke-
based interaction, and out-of-surface information. We also devel-
oped four application prototypes to showcase ShadowTouch’s inter-
action space. The usability evaluation study showed ShadowTouch 
achieved a signifcantly higher resolution to distinguish fnger touch 
states compared with collision-based algorithms, while applica-
tions enabled by ShadowTouch were well accepted by participants 
for lower mental demand, stronger willingness, higher easiness, 
higher integrity, and stronger confdence in usage compared with 
threshold-based techniques. 

To sum up, we feature three main contributions of our work: 
• We present the concept of ShadowTouch, a novel sensing 
scheme leveraging wrist-emitted light to construct recogniz-
able shadow features for indicating the accurate touch state 
of near-surface fngers. 

• We proposed a prototypical implementation of ShadowTouch, 
along with the hardware design and a lightweight two-stage 
model to recognize the near-surface touch states of indepen-
dent fngers, achieving a recognition accuracy of 99.1% and 
an F-1 score of 96.8%. 

• We demonstrated the rich hand-to-surface gesture space 
empowered by ShadowTouch and presented application pro-
totypes to showcase ShadowTouch’s interaction space. Our 
usability study validated the efectiveness of ShadowTouch 
compared with threshold-based techniques. 

2 RELATED WORK 

2.1 Physical-Aligned Touch Interaction in 
Immersive Environment 

Adopting physical settings or surfaces in the environment to pro-
vide haptic feedback in VR/AR has found interest in Mixed Reality 
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communities. Ofering passive haptic feedback with the help of 
physical entities in the environment has more advantages in re-
ducing fatigue [11, 25], improving the accuracy of hand gesture 
input [25, 59] or sketch input[3, 25], enriching the set of interac-
tion paradigms [19], etc. For instance, Yang et al. [66] adopted the 
user’s skin as a convenient surface for tactile touch-driven inter-
actions to enable precise on-skin touch segmentation. Also using 
the human body for tactile feedback, Fang et al. [11] explored self-
haptics where the user’s right hand physically feels a keypad surface 
for interaction. Wang et al. [51] and Liang et al. [29] investigated 
stroke-based interaction on the palm and the fngertip respectively 
to enable efcient interaction with good self-haptic feedback. Om-
niTouch [19] enabled the user to use their hands, arms, and legs 
as graphical, interactive surfaces as well as appropriate surfaces 
from the environment to expand the interactive area. For 3D sketch 
input tasks in VR/AR, touching a rigid physical surface for sketch-
ing has proved to improve the accuracy [2, 3, 10, 25, 26, 44]. Arora 
et al. [3] conducted a study that indicated drawing on a physical 
surface in VR performed better than projecting to virtual planes 
in the accuracy of the sketching. Jiang et al. [25] implemented VR 
physical gloves that enabled one user’s non-dominant hand as a 
canvas and the dominant hand as the painter to provide physical 
feedback in 3D sketching. 

Our work shared a similar goal with these works of bringing 
physical surfaces to hand interaction in MR to provide tactile feed-
back for better user experiences. Further, since the sensing scheme 
of ShadowTouch was irrelevant to the surface, it has more interac-
tive capabilities for the ubiquitous hand input everywhere, not rely-
ing on any augmented surfaces or created overlays. We envisioned 
any fat physical surfaces in the environment to be interactable 
with ShadowTouch. 

2.2 Recognizing Touch on Unmodifed Surface 
Researchers have been seeking solutions to sense touches on un-
modifed surfaces with various sensing methods, including IMU 
[14, 15, 30, 41], vibration sensing [21, 32, 46], pressure sensing 
[23, 52, 61], acoustic sensing [20, 27, 43, 56], and optical sensing 
[1, 12, 17, 36, 38]. 

The touch, based on the interaction context, could be explained 
as either the touch event [14, 15] or the touch state [35, 46]. The 
touch event refers to a transient "clicking" gesture with a touch-
down phase immediately followed by a touch-up phase, while the 
touch state means whether a specifc fnger contacts the surface at a 
specifc moment. Typically, detecting the touch state is known as a 
much harder task since it decouples the touch-down and touch-up 
phases [46], where touch-downs are more recognizable and touch-
ups are implicit to the inertial signal. These two diferent sensing 
subjective (touch event v.s. touch state) rely on diferent sensing 
principles and could support diferent interaction spaces. 

For sensing touch events, IMUs are most frequently used because 
they are suitable for capturing subtle movements and vibrations. For 
example, AnywhereTouch [41] proposed a fnger-tracking method 
using nailed-mounted IMU on arbitrary surfaces. Gu et al. [14, 15] 
implemented a fnger ring with IMU to detect the touch events 
of the index fnger and further supported text entry on physical 
surfaces. TypeAnywhere [64] used a wearable device that straps 

individually for fngers to decode typing sequences based only 
on fnger-tap sequences without relying on tap locations. TapID 
[34, 35] proposed a wrist-worn IMU device to sense precise touch 
events of an individual fnger. Researchers also investigated acoustic 
methods [20, 27, 43, 56] to classify hand touching gestures, general 
hand-to-surface activities, and objects that actively emit acoustic 
signals [46]. For example, AudioTouch [27] enabled a system that 
requires attaching two piezo-electric elements, acting as a surface-
mounted speaker and microphone, on the back of the hand to sense 
micro tap-based gestures. 

Regarding the touch state, existing detection methods are largely 
based on certain sensor thresholds (e.g., magnetic feld sensors [6], 
optical sensors [38, 57], and depth cameras [1, 35]). For instance, 
Magic Finger [57] integrated an optical mouse sensor and an RGB 
camera into a device worn on the fngertip. 3DTouch [38] coupled 
an optical laser sensor with a 9-DOF inertial measurement unit to 
support 3D interaction techniques, such as selection, translation, 
and rotation. Agarwal et al. [1] detected touch locations and mo-
ments of contact with overhead stereo cameras, discussing how the 
noise from stereo depth causes erroneous proximity readings. Opti-
cal sensing methods using depth cameras could help to recognize 
touch location, but the noisy depth data for reliable event detection 
is limited by the camera’s depth resolution and frame rates [35]. 
Other than threshold-based methods, Shi et al. managed to use a 
fnger-worn IMU to sense the touch state of a certain fnger by 
distinguishing the vibration features between a supporting fnger 
and a non-supporting fnger [46]. 

As most related to our work, a number of research have further in-
vestigated the feasibility of recognizing fnger touch states with en-
hanced vision-based methods by observing implicit optical features 
such as specular features [7, 60], shadow features[24, 45, 47, 48, 50], 
heat images [5, 28], and fngernail images [13, 49]. For example, 
HeatWave [28] leveraged thermal imaging cameras to detect fnger 
touch, shape-based gestures, and pressure-based gestures on arbi-
trary surfaces, while ContactDB [5] analyzed and predicted grasp 
contact between hand and objects with thermal imaging. Local im-
age changes in colors and textures on [13, 49] and around [13, 45] 
also served as essential features to indicate the contact state of the 
fnger. Sekiya et al [45] presented a novel method to detect fnger-
to-skin contact by recognizing the shadows and texture around 
fngertips from skin deformation. PressureVision [13] presented 
an end-to-end model to estimate hand pressure map from a single 
RGB image. 

In line with these works, ShadowTouch also focuses on the recog-
nition of independent fnger touch states with pure vision-based 
solutions. Diferent from existing vision-based methods, Shadow-
Touch actively constructed shadow features to amplify the subtle 
near-surface fnger movements to achieve higher spatial resolution. 
Regarding the hardware form, ShadowTouch used a wrist-worn 
device that is not invasive to users’ daily touching or hand activities 
compared with the fnger-worn form [42]. 
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2.3 Enhancing Vision-based Hand Gesture 
Recognition with Auxiliary Optical 
Instruments 

Deploying auxiliary optical instruments to improve the capability 
of vision-based hand recognition has been extensively researched. 

Constructing and utilizing refection on mirror-like surfaces is 
a prevalent choice to enhance vision-based hand gesture sensing 
since it can provide multiple views of the observing hand and enable 
stereo gesture recognition [7, 31, 33, 55, 58, 62]. Matulic et al. [33] 
proposed a mounting mirror above the phone screen so that the 
front-facing camera captures the thumbs on or near the screen. Lim 
et al. [31] utilized plane mirrors to create multiple views of the 
hand to reduce the issues of occlusion and the error in measuring 
the fexion angle of fnger joints. Yang et al. [58] attached an omni-
directional mirror to the front camera to enable peripheral vision 
around the device. Yu et al. [62] used a prism mirror placed on 
the front camera to create a stereo vision system that generates a 
depth image of the hand for tracking fnger location and movement. 
RefecTouch [65] detected the grasping posture of smartphones by 
the refection images of corneal. Regarding fnger touch sensing, 
MirrorTrack [7] and SymmetriSense [60] mounted a near-surface 
camera to track the user’s fngers together with its mirror refection 
to detect multi-fnger touch for specular surfaces. 

Constructing fngers’ shadow projection with customized light 
sources is another type of optical-enhanced strategy that has been 
explored by many research [24, 39, 40, 48, 50, 53, 54]. For example, 
Shoemaker et al. [47] and Song et al. [48] enhanced hand interaction 
on interactive display systems by recognizing hand shadows cre-
ated from projector-screen casting. PlayAnywhere [54] presented 
an interactive projector system along with a shadow-based touch 
detection algorithm, allowing the user to perform touch input on 
the projected contents. ShadowSense [24] recognized social touch 
gestures between a human and a robot by positioning a camera 
behind the robot’s translucent skin to capture shadows generated 
from human touch. Niikura et al. [39] constructed multi-source 
shadows by positioning multiple IR lights in the scene to indicate 
fnger touch events with the shadow patterns captured by an in-
frared (IR) camera and two IR lights to detect the shadows of a 
fnger. Another research of Niikura’s [40] used wrist-worn LEDs 
and a camera to recognize fnger-surface interaction and the fn-
gers’ moving directions. Although the wrist-emitted perspective 
was capable for observing the subtle contact state near fngers, such 
a system design required a camera worn between the wrist and 
the surface, leading the hand and the forearm to hover in the air to 
cause much fatigue and computational issues. 

In our work, ShadowTouch adopted a wrist-emitted shadow pro-
jection strategy similar to Niikura’s work [40]. Compared with 
prior work based on natural shadow projection (e.g., by a standard 
projector [47, 48, 54] ), ShadowTouch took advantage of its unique 
optical design to achieve a larger amplifcation ratio of near-surface 
fnger movements, thus having an increased spatial resolution in 
detecting hand-to-surface touches. Moreover, our design of con-
structing fnger shadows with a wrist-mounted light source and 
reusing the cameras for hand tracking to enhance fnger touch 
recognition allowed the user to interact with arbitrary surfaces 
with a light-weighted and computational-friendly hardware form. 

Figure 2: The working principle of ShadowTouch. 

3 SHADOWTOUCH DESIGN 
In this section, we frst introduce the initial inspiration and the 
working principle of ShadowTouch. Then we explain the justifca-
tions for the optical design details to construct high-quality shadow 
features. Finally, we present the fnalized hardware prototype. 

3.1 Working Principle 
ShadowTouch aims to construct recognizable optical features to 
indicate the accurate touch state of near-surface fngers, which is 
complementary to vision-based hand tracking in sensing subtle 
hand-to-surface gestures. The fundamental working principle is 
illustrated in Figure 2. A forward-facing light source � (e.g., a LED) 
is mounted on the user’s wrist and lights up the neighboring area 
of the hand. When the hand is approaching a surface, some of the 
light cast on the surface is obstructed by fngers, thus yielding 
shadows in front of corresponding fngers. Assuming the height 
of the light source is ℎ� , and the height of the fngertip is ℎ� , the 
distance between the tip of the yielded shadow and the touch point 
�� can be computed as: 

�� ℎ� 
=�� (ℎ� − ℎ� ) (1)
�� �� 

���� = = 
ℎ� (ℎ� − ℎ� )

, where �� represents the projected distance between the light 
source and the fngertip on the surface, which is associated with 
the hand size and posture and is usually within a certain range 
(e.g., 10cm to 20cm). ���� indicates the magnifcation ratio to mea-
sure how much ShadowTouch magnifes the subtle near-surface 
fnger state by casting ℎ� to �� . From the above formula, we noticed 
smaller ℎ� leads to a more signifcant magnifcation efect. Mean-
while, due to the refection property of the difuse surface, smaller 
ℎ� also means a smaller incident angle that causes less contrast of 
the shadow. Therefore, further justifcations on the hardware form 
are needed to fnd an optimal solution balancing magnifcation and 
contrast to yield high-quality shadow features for recognition. 

3.2 Optical Design Considerations 
To facilitate the optical design in constructing high-quality shadow 
features, we discussed the design details by giving four research 
questions along with our explorations and considerations, as de-
tailed below. Some of the considerations were generated from pilot 
experiments with three lab members. 

DQ1: What are the general design goals for ShadowTouch 
hardware? Since the quality of the shadows largely depends on 
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the optical design, the general goal should be to yield high-quality 
shadow features. High-quality shadow features are expected to be: 
1) With sufcient movement magnifcation ratio ���� . We found 
pilot users hard to preserve the hover state when the fnger was as 
close as ℎ� < 1�� to the surface, so we assumed 1�� as the target 
resolution that ShadowTouch aimed to recognize, where the ampli-
fed shadow movement for the 1�� resolution should be salient 
for the camera view. 2) With recognizable contrast (or SNR). Since 
smaller ℎ� causes less contrast of the shadow, a minimum height 
of the light source should be determined to ensure the SNR of the 
shadow against environmental interference (e.g., the ambient light). 
3) Covering rich gesture spaces. Shadows of diferent fngers should 
be separated and legible instead of being obstructed (e.g., the thumb 
would be obstructed by the thenar if the light was placed improp-
erly) or fused with other hand segments. Also, although a general 
open-palm arced-fnger posture is expected for ShadowTouch, dif-
ferent hand positions (e.g., wrist-resting and wrist hovering) should 
be considered and accommodated. 

DQ2: Why the light source is mounted on the wrist instead 
of the fngers? Considering the form factor, the light source is most 
possibly to be deployed on the wrist combined with a smartwatch 
(or a wristband) or on the fnger with a ring because smartwatches 
and rings are the most prevalent forms of wearable devices. We 
chose to mount the light source on the wrist instead of the fngers 
for two reasons: 1) The user usually performs a touch with his hand 
arced, leading to greater ℎ� and smaller �� (see Section 3.1 for the 
defnitions) - which indicates less magnifcation - for the fnger-
mounted setting. 2) The fngers are constantly moving or shaking, 
both intentionally (e.g., the touching fnger) and unintentionally 
(e.g., the idle in-air fngers), during a touch, making the shadows 
volatile and inferior for recognition if the light source were mounted 
on a fnger. 

DQ3: How to determine the hyperparameters, including 
the height, the position, and the specifcation of the light 
source? The general guideline to optimize the form and the param-
eters of the light source is to optimize the three design goals in DQ 
1. For shadow magnifcation, we found �� > 5�� showed good 
recognizability for a down-facing camera. Assuming �� = 120�� 
(e.g., for the index fnger) averagely, we have ℎ� < 25�� from 
Equation 1, which the height of the light source stand should be 
smaller than. For the shadow contrast, we found the height of the 
light should be at least 10�� so that the shadows can be seen by 
human eyes on an ordinary lightwood difuse refective desktop 
using a 0.06W LED light. Finally, considering the coverage of the 
gesture space, we found if the light source were squarely mounted 
on a wristband, the light would be easily blocked by the root of the 
palm, especially when the wrist rested on the surface. Therefore, 
we chose a design where the light source reaches out from the wrist 
to the root of the palm. 

DQ4: What is the proper camera confguration used for 
ShadowTouch? 

For simplicity, we did not consider a multi-camera solution for 
ShadowTouch. We adopted a head-mounted setting, where the 
camera was mounted on the top of the VR/AR headset with a down-
facing perspective, as shown in Figure 3, mainly for two reasons. 1) 
Light-weighted hardware. Wrist-mounted cameras would introduce 
extra modules and circuits that not only increase the wristband’s 

Figure 3: The hardware prototype of ShadowTouch. (a) The 
camera. (b) A wearing example of the wristband. (c) Specif-
cations of the light widget. 

weight and size but also bring problems in balancing energy con-
sumption, computation, and data transmission. As comparison, 
ShadowTouch merely requires a light widget instead of introducing 
an independent computing device. 2) Unifed and reusable camera 
system. Although we used an external head-mounted camera in 
our prototype, the form factor is designed to be capable of reusing 
the original camera system of the HMD. The sensing pipeline can 
be seamlessly integrated into the original hand tracking system by 
reusing both the raw camera frames and the hand tracking results. 

To ensure the camera can capture the on-surface hand in a wide 
range, we chose a wide-range camera with 120◦ FoV. Regarding the 
frame rate, previous work [14] has shown a normal touch event is 
a transient process and typically happens within 50 ms. Using a 
30-FPS camera in such a case would merely capture 1-2 frames and 
sufer severe motion blur for the whole touch process. Therefore, 
we chose a 120 FPS camera that can capture the whole process of 
touch, along with the movement of the shadows. 

3.3 Hardware Prototype 
We prototyped ShadowTouch hardware with a wearable wristband 
and a wide-range high-speed camera, as shown in Figure 3. We 
used a 0.06W LED bulb as the light source and fxed it on a 3D-
printed plastic widget. The arc-shaped widget can be clamped on 
the wristband and reach out from the wrist to keep the light source 
at the root of the palm and 15mm above the desktop. The power 
supply of the light source is a 3V battery on the wristband. If needed, 
prototyping the widget with stretchable material (e.g., memory 
metal) can achieve better adaptability to diferent sizes of palms, 
hands, and various wearing habits. 

The USB camera frame rate is 120 FPS, with a diagonal FoV 
of 120◦ (or a 113◦ horizontal FoV and a 81◦ vertical FoV), and a 
resolution of 1280 × 720. The camera is mounted on an Oculus 
Quest 2 VR headset with a down facing angle of 45◦, as shown in 
Figure 3 (a). 

4 SHADOWTOUCH ALGORITHMS 
In this section, we introduced the sensing algorithms of Shadow-
Touch to recognize the hand-to-surface touch state of independent 
fngers. 
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Figure 4: The algorithm pipeline of ShadowTouch. 

4.1 Overall Pipeline 
The overall algorithm pipeline is shown in Figure 4. Instead of 
directly training an end-to-end recognition model, we broke the 
task into two stages - fngertip region extraction and touch state 
recognition. The frst stage detects the hand keypoints from an 
individual frame and outputs the boundaries of all fngertips with 
dynamic sizes. Then the second stage extracts cropped frame series 
within a short period and classifes the touch state for each fnger. 
Considering the high-speed camera and the two stages were not 
necessarily to run at the same frequency (e.g., 120 FPS for the cam-
era, but lower for the keypoint detection and touch detection), we 
designed an asynchronous workfow for our algorithms, where a 
group of shared boundaries of fngertip regions was maintained. 
Stage 1 would update the values of the boundaries at each compu-
tation, while stage 2 extracts the regions for recognition based on 
the latest boundaries. 

4.2 Fingertip Region Extraction 
We used the Mediapipe hand landmark model[63] to acquire the 
keypoints from the video frames. The model frst detects palms 
from the image to fnd the valid hand regions and then performs 
a keypoint detection model to localize all 21 keypoints (which 
is a standard representation used in previous hand datasets [37]) 
for each hand. The position of each keypoint is a 3-D normalized 
coordinate where the z-axis represents the estimated depth relative 
to the root (wrist) joint. Based on the x- and y-coordinates output, 
we extracted the region boundaries of all fve fngertips by using 
their keypoint coordinates as the centers and adopting a dynamic 
side length of [ �� +�� ] · �, where �� and �� represents the size � 
of the bounding box of all 21 hand keypoints in x- and y- axes 
respectively. � controls the discretization level and �, � control the 
region size. In our implementation, we used a camera with the 
resolution of 1280 × 720 and chose � = 50 and � = 10 based on a 
pilot real-time observation, ensuring an appropriate region size to 
capture complete shadow features while including the least other 
interfering areas. 

4.3 Touch State Recognition from Fingertip 
Regions 

To facilitate efcient touch state recognition, we built a light-weight 
CNN model based on a pre-trained MobileNet V3 backend [22], 
which was proven efcient in computation for mobile devices (e.g., 
running on the CPU of a smartphone). Given a series of consecutive 
� cropped frames ��,0, · · · , ��,� −1 of fnger � (� = 0 for the thumb 
and � = 4 for the pinky fnger), our model frst passed each ��,� 
through the MobileNet V3 backbone network to acquire a feature 
vector v� with the shape of 960. Then we concatenated all the 
feature vectors, along with a 5-dimensional one-hot vector �� to 
indicate the fnger identity, and passed the concatenated vector 
[v0, · · · v� −1; �� ] through a multi-layer perceptron (MLP) classifer 
to acquire the touch state prediction. The whole model structure 
is shown in Figure 4. In real-time prediction, for a certain time 
step, we stacked all the cropped frames of 5 fngers into a batch to 
accelerate the forward computation of the MobileNet V3 backbone 
network. 

For the training process, we adopted three data augmentation 
strategies - 1) randomly jitter the brightness and the hue by 0-0.5, 
2) randomly rotate the image by 0 − 30◦, and 3) randomly shift the 
image by 0-4 pixels - to improve the data diversity. 

4.4 Implementation 
The whole algorithm pipeline was implemented in Python and Py-
torch on a Windows PC (CPU: Intel Core i9-12900KF; GPU Nvidia 
GeForce RTX 3090). The USB camera was wired to the PC, and 
the camera stream was read by a Python thread at 120 FPS. The 
keypoint detection and the touch recognition threads both ran at 
approximately 60 FPS. For a typical setting with a window size of 
5, the pipeline reported the touch state of all the fngers at approxi-
mately 60 FPS with a delay of approximately 20 ms. The reported 
touch states were further streamed to a VR/AR device using web 
sockets to plug into the applications. 

5 ALGORITHM EVALUATION 
We conducted a systematic evaluation on our sensing pipeline and 
algorithms to gain an understanding of the performance in diferent 
settings and with diferent hyperparameters. 

5.1 Participants and Apparatus 
We recruited 12 participants (3 females), with an average age of 22.8 
(SD=1.3), from the local campus by word-of-mouth. All participants 
were right-handed, and the sizes of their palms (from the root of 
the palm to the root of the middle fnger) and hands (from the root 
of the palm to the tip of the middle fnger) were 10.5 (SD=0.9) cm 
and 19.0 (SD=1.8) cm, respectively. 

The settings of the wrist-mounted light source were the same as 
described in Sec 3.3 and Figure 3. We expected the collected video 
data could be automatically labeled with the minimum artifact, 
which implied two requirements for the data collection process: 1) 
the whole hand and the near-hand shadow region should always 
be fully captured in the camera view, and 2) the ground-truth touch 
signals should be simultaneously captured. For 1, to reduce the bur-
den on participants, we mounted the camera on a fxed long arm 
gooseneck bracket for data collection, where the camera captured 
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Figure 5: Data collection settings. (a) Apparatus and setup. 
(b) An example of camera capture (cropped to highlight the 
hand region). (c) The selected background textures other than 
the white background. 

the data from a perspective similar to the participant’s eyes. The 
camera was randomly repositioned before the collection of each 
video segment to cover diferent camera perspectives. To achieve 
2, a Sensel Morph multi-touch board was placed on the table at 
the bottom layer to collect ground-truth touch signals of diferent 
fngers used for automatic labeling. Moreover, we printed maps of 
three typical materials - white, lightwood, and marble (see Figure 
5 (c)) - on paper and covered them on the Sensel board to simu-
late diferent kinds of planes to interact with. Figure 5 (a) showed 
an overview of the data collection environment, and Figure 5 (b) 
showed an example of camera capture (cropped to highlight the 
hand region). 

5.2 Data Collection 
The data collection process started with a brief introduction to 
the basic sensing goals and principles of ShadowTouch. Then the 
experimenter helped the participants put on the wristband and set 
up the camera and the Sensel board properly. Meanwhile, each par-
ticipant’s age and the size of their palms and hands were recorded. 

The collection process contained 3 rounds. At the start of each 
round, a random background texture was picked and covered on the 
top of the Sensel board. Each participant was required to record 9 
video segments in each round. They frst performed 5 long taps (2-3 
seconds for each tap) and 10 fast taps (≈0.5 second for each tap) with 
fve individual fngers, respectively, using their right hand. Since 
the thumb, index fnger, and middle fnger are more commonly 
used in hand-to-surface gestures, they were required to perform 3 
long taps, 3 double taps, and 3 × 4 slidings in four directions with 
these three fngers, respectively, to cover broader gesture spaces. 
Finally, they were instructed to collect a video of negative samples 
by either moving their fngers freely in the air, actively pretending 
to touch, or constructing other hard negative samples. Before the 
recording of each video, the camera was randomly repositioned by 
the experimenter to cover diferent camera perspectives. Partici-
pants repeated the above procedure to accomplish three rounds of 
data collection. A 30 seconds break was taken between two rounds. 
Each participant completed the study in around 20 minutes and 
was compensated for 10$. 

As the result, we collected a total of 12 users × 3 background tex-
tures (white, lightwood, and marble) × 9 = 324 video segments. Each 
video segment lasted for approximately 25s (3000 video frames), 
and all the video data added up to approximately 135 minutes. 

In our data collection process, we have special considerations to 
cover diferent conditions, including camera position/perspective 
(by repositioning the camera in each video, equivalent to covering 
diferent regions), wrist height (not restricted), touching postures, 
textural background (three backgrounds), and ambient light (not 
restricted, collected in 3 rooms) to get more diverse and hard data. 

During the recording, the camera captured the touch process 
along with the shadows from a perspective similar to the partic-
ipant’s eyes, while the Sensel board recorded the key frames on 
which the number of contact points changed. Since the identity of 
the touching fnger for a certain video segment was unique and 
known, we ran an automatic labeling program to label the touch 
state (contact v.s. non-contact) of each fnger for all video frames 
based on the data from the Sensel board. 

5.3 Dataset and Evaluation Metrics 
We constituted the datasets for training and evaluation by sampling 
frames from labeled video clips. We sampled � positive (contact) 
samples for the target fnger and 5 × � negative samples for all 
fve fngers from each video with a positive label (e.g., index fnger 
touch) while merely sampling 5 × � negative samples for each fn-
ger from the negative videos. For the train set, we sparsely sampled 
video clips at a ratio of 5/1000, considering the memory load, and 
generated three datasets with diferent time window lengths of 1, 
3, and 5 frames for each user, each containing approximately 400 
positive samples and 2000 negative samples. For the test set, we 
sampled the video clips with the same strategy but a higher sam-
pling ratio, generating a 5-frame datatset with approximately 1000 
positive samples and 5000 negative samples for each user. To ensure 
the cross-user and cross-method consistency in the evaluation, we 
fxed the test datasets during the whole evaluation process, and for 
shorter time window lengths, test sets were generated by selecting 
the middle frames from the 5-frame samples. 

Considering merely a small portion of frames were used for 
training in a sampling round, we developed an asynchronous data 
reloading strategy to generate more diverse training data and opti-
mize data utilization efciency. Specifcally, we implemented the 
strategy by creating an individual thread that continuously updated 
the train sets with the same sparse sampling probability, while the 
main thread updated the data and conducted model training. The 
updated datasets were reloaded for every four training epochs. 

We conducted leave-one-out cross-evaluations using two train-
ing strategies (cross-user, C-U; cross-user + asynchronously reload-
ing train data, C-U-R) with three diferent window sizes (1, 3, 5 
frames), and reported the accuracies, recalls, precisions, and F-1 
scores of the touch state recognition for individual fngers and 
merged fngers. 

5.4 Results 
The means and standard deviations of recognition accuracy, pre-
cision, recall and F-1 score of touch state recognition for each fn-
ger across all participants under the leave-one-user-out setting 
was reported in Table 1. From the results, ShadowTouch gener-
ally achieved a promising performance in recognizing fnger touch 
state, with an optimal average accuracy of 99.1% and an F-1 score 
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Table 1: Accuracies, precisions, recalls, and F-1 scores of our evaluation in two training strategies and three window sizes. 
Numbers in the table are in percentage (%). 

Window Size = 1 Window Size = 3 Window Size = 5Strategy Finger 
F-1 Acc Rec Prec F-1 Acc Rec Prec F-1 Acc Rec Prec 

Thumb 97.2(2.3) 99.0(0.7) 97.7(3.3) 96.8(2.7) 96.7(2.0) 98.9(0.6) 97.2(2.3) 96.3(3.5) 96.7(2.9) 98.8(1.0) 97.8(3.3) 95.8(4.0) 
Index 96.3(3.5) 98.7(1.2) 95.8(5.6) 97.0(2.7) 97.3(2.9) 99.0(1.1) 97.8(2.8) 96.7(3.3) 96.5(2.9) 98.7(1.0) 98.3(1.4) 94.9(5.8) 
Middle 95.4(4.1) 98.4(1.3) 96.0(4.9) 95.0(5.0) 95.9(2.8) 98.6(0.9) 95.9(3.2) 95.9(3.4) 95.6(3.8) 98.4(1.4) 96.7(2.4) 94.9(7.1) C-U Ring 92.3(7.0) 98.6(1.1) 92.0(11.4) 93.8(6.1) 92.4(6.5) 98.5(1.7) 91.3(7.5) 94.0(7.3) 90.4(9.7) 98.0(2.2) 93.9(8.5) 88.8(14.2) 
Pinky 88.1(10.7) 97.9(1.8) 86.8(12.9) 91.4(12.5) 88.5(13.0) 98.1(1.7) 86.6(17.4) 92.1(6.5) 86.3(15.6) 97.8(2.1) 86.0(18.8) 87.9(13.9) 
All 94.9(3.5) 98.5(0.9) 94.8(4.2) 95.2(4.0) 95.3(3.4) 98.6(1.0) 95.1(3.5) 95.5(3.7) 94.5(4.6) 98.4(1.3) 95.8(2.7) 93.5(7.2) 

Thumb 97.4(2.3) 99.1(0.7) 98.0(1.9) 96.8(2.7) 97.2(2.1) 99.0(0.6) 97.0(3.1) 97.4(2.6) 98.1(1.7) 99.3(0.6) 98.9(2.1) 97.4(2.2) 
Index 96.6(2.8) 98.8(1.0) 97.5(3.0) 95.8(3.7) 96.6(2.7) 98.8(0.9) 96.7(3.5) 96.5(2.5) 98.0(2.1) 99.3(0.8) 98.6(2.2) 97.5(2.9) 
Middle 96.0(3.3) 98.6(1.1) 96.5(3.1) 95.6(4.7) 96.5(3.4) 98.7(1.2) 97.7(1.7) 95.4(5.5) 96.9(2.6) 98.9(0.8) 98.0(2.6) 96.0(4.2) C-U-R Ring 91.0(7.7) 98.3(1.5) 90.2(11.6) 92.8(6.6) 90.8(9.2) 98.0(2.2) 92.6(7.5) 90.3(13.2) 94.0(5.1) 98.8(1.0) 93.6(7.6) 94.6(3.6) 
Pinky 89.3(10.1) 98.2(1.5) 87.2(15.1) 92.7(5.1) 89.2(10.7) 98.2(1.6) 87.3(13.1) 91.6(8.4) 94.0(5.6) 99.0(0.7) 93.7(7.3) 94.4(4.3) 
All 95.2(3.6) 98.6(0.9) 95.2(4.4) 95.3(3.3) 95.1(3.8) 98.6(1.0) 95.4(3.4) 94.8(4.8) 96.8(2.0) 99.1(0.6) 97.3(2.2) 96.4(2.3) 

of 96.8% across all fngers using a 5-frame window and with the 
frame reloading strategy. 

Regarding diferent window sizes, the optimal F-1 scores for 1-
frame and 3-frame models were 95.2% and 95.1% respectively, which 
were lower than the F-1 score of 5-frame model. Friedman test 
found signifcant efects on window size (�2 (2) = 10.17, � < 0.05). 
We also observed that 5-frame model achieved more robust and 
stable recognition (e.g., with fewer trembles and transient errors) 
in real applications, probably because models with larger window 
sizes could observe the motion of fngers in a certain period rather 
than the static state in an individual frame, serving the role of a 
smoothing flter. 

Regarding data reloading, we found it had greater improvements 
for 5-frame model (e.g., 96.7% v.s. 94.0%) rather than for 1-frame and 
3-frame models, which was understandable because input data for 
larger window size should cover a larger sampling space containing 
temporal (e.g., motion-related) information. Wilcoxon Signed-Rank 
tests found signifcant efects on data reloading strategy for 5-frame 
model (� = −2.98, � < 0.05), but no signifcant efect for 1-frame 
model (� = −0.55, � = 0.58) and 3-frame model (� = −0.47, � = 
0.64). We also found the improvement even much stronger for the 
ring fnger (94.0% v.s. 90.4%) and the pinky fnger (94.0% v.s. 86.3%), 
probably because the ring and pinky fnger regions were more 
frequently obstructed, thus with lower quality and greater noise. 

The accuracies of diferent fngers were reported in Table 1. 
The optimal F-1 scores of the fve fngers were 98.1%, 98.0%, 96.9%, 
94.0%, and 94.0% respectively. The recognition results of thumb, 
index fnger, and middle fnger signifcantly outperformed that of 
ring fnger and pinky fnger (97.7% v.s. 94.0%, � = −2.34, � < 0.05) 

By manually examining the error cases, we found that the fnger-
tip area in some samples was obviously wrong, which was caused 
by the error of Mediapipe as shown in Figure 6(b). We manually 
examined 5 (fngers) * 100 error samples, fnding 13.8% of the errors 
were caused by Mediapipe (9, 16, 10, 20, and 14 for thumb to pinky 
fnger respectively). Such errors could be potentially eliminated 
with a better hand tracking system. In addition, in the process of 
data collection, we found that ring and pinky fngers were easily 
blocked by the fnger on their left when touching down (Figure 
6(a)), and the fexibility of these two fngers varied greatly between 

Figure 6: Examples of error cases: (a) The pinky fnger is 
obstructed by other fngers. (b) Errors of MediaPipe fngertip 
recognition. 

diferent participants. For some participants, it was difcult to avoid 
occlusion by controlling their fngers. In particular, the length of 
the little fnger also varies greatly among the participants. Par-
ticipants with longer little fngers tended to naturally bend their 
fngers and click, while those with shorter pinky fngers tended to 
straighten their fngers and click. As a result, the images cropped 
around fngertips vary, which also leads to a decline in recognition 
accuracy. 

Here we also established an empirical comparison between Shad-
owTouch and state-of-the-art fnger touch recognition techniques. 
As is most similar to ShadowTouch, PressureVision [12] presented 
a model to regress the hand’s contact map with the surface in a 
one-frame bare-hand setting, achieving a contact accuracy of 90.4% 
for individual fngers. As a comparison, ShadowTouch achieved a 
fnger contact accuracy of 98.6% for 1-frame model and 99.1% for 
5-frame model, showing a signifcant improvement in accuracy and 
applicability, as well as the efectiveness of actively constructing 
shadow features to amplify near-surface fnger state. 

6 APPLICATIONS AND USABILITY 
EVALUATION 

In this section, we discuss how ShadowTouch’s sensing capability 
can beneft hand-to-surface interaction design and empower a large 
gesture space of free-form hand-to-surface interaction in mixed 
reality. We developed four application prototypes to showcase Shad-
owTouch’s potential and applicability in real usage scenarios. Fi-
nally, we conducted a user study to evaluate the capability, user 
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experience, and subjective preferences between ShadowTouch and 
traditional hand-to-surface interaction schemes. 

6.1 Design Space 
ShadowTouch brings the unique capability of detecting the near-
surface touch states of independent fngers, with which a broad 
hand-to-surface interaction space can be designed. Below we out-
lined ShadowTouch’s interaction space from three aspects: 

Touch-based interaction. Touch-based interaction is the most 
intuitive hand-to-surface interaction form that a user could take 
advantage of from the aligned haptic feedback. By deriving touch 
events from the touch states, ShadowTouch allows the user to per-
form touch on unmodifed surfaces with diferent fngers, as previ-
ous work [14, 15, 34, 35, 64] supported. Moreover, a huge leap over 
existing solutions such as TapID [34, 35] is that since the touch 
states of diferent fngers were recognized independently, Shad-
owTouch inheritedly supports multi-touch interaction, which can 
be used for multi-touch shortcuts or touching multiple widgets 
simultaneously (e.g., in playing games). 

Stroke-based interaction. Stroke-based interaction on the sur-
face has a similar experience to performing fnger swiping on a 
trackpad, which can be achieved by ShadowTouch from the ca-
pability of sensing the touch state of a certain fnger. Combined 
with touch event detection, ShadowTouch can easily turn arbitrary 
surfaces into a touchpad interface that supports cursor control and 
keystroke events. Bringing multi-fnger touch states to construct a 
multi-stroke interface could further improve gesture expressivity, 
where interactions based on multi-strokes, such as transforming an 
image, can be implemented. Although Shi et al. achieved sensing 
the touch state of a certain fnger with IMUs [46], the gesture space 
was restricted because the system only recognized the touch state 
of one fnger. 

Out-of-surface information for interaction. Compared with 
the interaction space enabled by a touchscreen or touchpad, Shad-
owTouch has the unique beneft of combining the hand tracking 
results to provide out-of-surface information. For example, Shadow-
Touch indicates the identity of the touching fnger so that diferent 
functions can be assigned to diferent fngers. Moreover, other in-
formation, such as the touching angle and the touching posture, 
can potentially be integrated into the interface (e.g., controlling the 
stroke size with the touching angle) to provide more expressive 
and intelligent interaction schemes. 

6.2 Usage Scenarios and Application Prototypes 
We developed four application prototypes - a home navigator, a 
photo album, a whiteboard, and a text editor to showcase the above-
mentioned interaction concepts and functions. All four applications 
were developed using Unreal Engine (UE) 4.27 on an Oculus Quest 2 
with the latest Hand Tracking 2.01 engine. At the start of usage, the 
user should put their index fnger of the right hand on a physical 
surface and pinch with the thumb and the index fnger to align 
the VR desktop with the real-world surface. Figure 7 showed an 
overview of the application prototypes, and the detailed functions 
of each application are described below. 

1https://developer.oculus.com/blog/presence-platforms-hand-tracking-api-gets-an-
upgrade 

Home Navigator. As shown in Figure 7, a home navigator 
was displayed on a virtual screen in front of the user. Three icons, 
corresponding to the following three applications, were shown on 
the navigator. The user can control a cursor as if using a virtual 
trackpad on the aligned surface. They can 1) swipe on the surface 
to move the cursor (one-fnger, stroke-based) and 2) touch on 
the surface for confrmation (one-fnger, touch-based). When 
the user were in a certain application, they could perform a left-
or right-swipe with the index and middle fngers to switch the 
application, or an upward swipe with the index and middle fngers 
to return to the home (multi-fnger, stroke-based). If the user 
were in the home, they could perform a downward swipe with the 
index and middle fngers to return to the last application. 

Photo Album. As shown in Figure 7 (b), the photo album, dis-
played on the same virtual screen, allowed the user to swipe with 
the index fnger to switch to diferent photos (one-fnger, stroke-
based). For each photo, the user could touch and swipe using 
the thumb and the index fnger to apply transformations (panning, 
zooming, and rotating) on the photo (multi-fnger, stroke-based). 

Whiteboard. The whiteboard application shown in Figure 7 (c) 
consists of two UI regions - the main canvas at the center and the 
brush panel on the right. The user could assign diferent brushes 
to diferent fngers by tapping the corresponding brush size and 
color buttons on the brush panel with the target fnger (single-
fnger, touch-based, out-of-surface information). A brush cube 
indicating brush size and color was displayed above each fnger. 
After assigning brushes to diferent fngers, the user could paint on 
the canvas with diferent fngers as if drawing with diferent brushes 
(single-fnger, stroke-based, out-of-surface information). 

Text Editor. The text editor was shown in Figure 7 (d), consisting 
of a keyboard UI and a text input area. The user could tap on 
diferent keys with the index fnger to perform key input (single-
fnger, touch-based). They could also swipe on the keyboard with 
the middle fnger (single-fnger, stroke-based, out-of-surface 
information) to control the cursor’s position. 

6.3 Usability Evaluation 
We conducted a brief usability evaluation study to validate Shad-
owTouch’s advantages in real application scenarios. 

6.3.1 Design. We compared ShadowTouch with two collision-based 
techniques enabled by Quest 2’s built-in Hand Tracking 2.0 engine 
regarding the sensing resolution for near-surface fngertip move-
ment and users’ subjective experience in VR applications. The two 
baseline techniques applied 1) physically aligned interfaces (e.g., 
aligned to the desk, as described in Sec 6.2) and 2) hovering inter-
faces, respectively. Below we present the implementation details. 

Collision-based touch detection: We acquire the positions 
of the predefned fngertip markers from Quest 2’s hand tracking 
API 2 and set a vertical collision bar of 0.5 cm below and 2.0 cm 
above the fngertip landmark for each fnger. The two thresholds 
were determined to maximize the probability of distinguishing the 
touch-down and 1-cm hovering states of the index fnger for 100 
surface alignment attempts in a pilot experiment. A touch event 
is triggered whenever the corresponding fnger bar collision state 

2https://developer.oculus.com/documentation/unreal/unreal-hand-tracking 

https://2https://developer.oculus.com/documentation/unreal/unreal-hand-tracking
https://1https://developer.oculus.com/blog/presence-platforms-hand-tracking-api-gets-an
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Figure 7: Application prototypes of ShadowTouch. (a) Home navigator. (b) Photo album. (c) Whiteboard. (d) Text Editor. 

with the surface fips. Further optimization on avoiding unintended 
multi-fnger touch is applied to each application, where multi-fnger 
events are rejected if certain interaction is already in progress (e.g., 
if the cursor has been moved over a certain distance). 

ShadowTouch: To further optimize the recognition stability of 
ShadowTouch, we further applied a state-based smoothing strategy 
to tackle the touch status fuctuation, based on our observation 
that realtime recognition pipeline occasionally yielded transient 
fippings (typically within 5 frames) on the touch state. When no 
fnger touched down, 5 consecutive positive / negative frames were 
required to guarantee a touch-down / touch-up event. When a 
certain fnger already touched down, we set a higher threshold of 
10 consistent frames, which held a higher rejection rate to block 
both the recognition fuctuation and unintended touches to ensure 
the consistency of the currently performing gesture. The processed 
events were then sent to the VR application via socket. 

6.3.2 Comparison in Sensing Resolution. To understand how subtle 
diferent techniques can distinguish the fnger’s vertical distance to 
the surface, we conducted a measurement to analyze the sensing 
resolution of each technique. For ShadowTouch, in a normal pos-
ture (camera perspective 45◦, wrist ≈3cm hovering), the minimum 
height of the index fngertip from the surface with which Shadow-
Touch can stably report touch-up was around 2mm (measured by 
a millimeter scale at the same depth of the touch point from the 
recording of an along-surface macro camera). For collision-based 
algorithms, when the user touched the surface and slightly moved 
around their index fnger in the same posture, the height varia-
tion of the fngertip reported by Quest 2 Hand Tracking 2.0 was 
19.5mm (or 9.8mm for one lateral). Such a measurement validated 
that ShadowTouch could achieve a signifcantly higher resolution 
in diferentiating subtle near-surface touch states compared with 
collision-based algorithms. 

6.3.3 Subjective Experience in VR Applications. We recruited 10 
participants (3 females, aged 23.7 (SD=1.3), with a familiarity score 
of 5.1 (SD=2.0) out of 7 for VR hand interaction) from the local 
campus to experience four VR Applications in three techniques 
described in Sec 6.3.1. The hardware settings and VR applications 
used in the study were the same as described in Sec 3.3 and Sec 6.2. 

We designed interaction scripts to guide users’ experience proce-
dure. Specifcally, we broke down each application into single-step 
interaction tasks according to the functions described in Sec 6.2 
and designed scripts of a one-step atomic interaction sequence to 
form an integral usage fow. We summarized all possible atomic 

Figure 8: Subjective rating scores for diferent applications. 1 
- strongly disagree, 5 - strongly agree. 

interactions into three categories - one-fnger touch, one-fnger 
swipe, and multi-fnger gesture - as shown in Table 2. The template 
scripts of diferent applications are shown in Table 3. 

To evaluate users’ experience and subjective ratings of diferent 
hand-to-surface interaction techniques, we designed a question-
naire containing fve questions derived from the system usability 
scale (SUS) [4] on willingness to use, easiness to use, integrity, learn-
ability, and confdence regarding diferent applications under three 
techniques. Users were further asked to provide their subjective 
feedback towards three diferent settings. 

Figure 8 showed the subjective ratings on four applications un-
der three techniques. Higher scores indicate more willing to use, 
easier to use, better integrity, more easy to learn, and higher con-
fdence. The ratings indicated that participants generally favored 
the integration of ShadowTouch in all applications compared to 
other baseline techniques, which received a consistently higher 
score in willing to use (4.0), easy to use (4.1), integrity (4.3), and 
confdence (4.1). Most participants (N=8) mentioned aligning vir-
tual interfaces to physical surfaces was an efective way of reducing 
physical burden. "Aligned surface provided support of hand and better 
haptic feedback (P10)." All participants showed a positive attitude 
towards ShadowTouch’s potential leading new experiences in VR 
that had never been achieved before. "Although the hand tracking 
seems quite satisfying, I can still feel the improvement brought by 
ShadowTouch in distinguishing subtle touch states (P1)." "The accu-
racy of the index and middle fnger gestures was signifcantly higher 
than threshold methods. I was more confdent in using the system 
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(P8)." "ShadowTouch allowed me to touch with the rest fngers relaxed. 
I would not do this for threshold methods because it defnitely causes 
many unintended errors (P2)." Meanwhile, some participants also 
saw concerns regarding the current version of implementations. 
"When I dramatically moved my head, the tracking was cut of. I 
guess it was somewhat related to insufcient camera perspective (P5)." 
"The system should remind me when my hand moved out of the track-
ing area. Otherwise, it was a frustrating interruption (P10)." For the 
easy-to-learn dimension, ShadowTouch received a lower score than 
threshold-based techniques, probably due to "unclear trigger cri-
terion" and "adaptation from the threshold-based logic" from users’ 
comments. "It is hard for me to imagine how ShadowTouch detects the 
touches (P10)." "In my experience, hand gestures should be exaggerated 
in VR for better performance. It is a conceptual change (P3)." 

7 LIMITATIONS AND DISCUSSION 
In this section, we discuss the limitations and potential considera-
tions related to the practical deployment of ShadowTouch. 

7.1 System Robustness 
Although ShadowTouch generally showed good performance in our 
work, since it adopted a vision-based sensing solution, it inevitably 
yields failure cases due to the inherited drawbacks of the camera, 
such as improper ambient light (e.g., too bright or too dark for hand 
t racking), structural obstruction, peripheral camera view, etc. For 
example, in our evaluation, we found the ring fnger and the pinky 
fnger had lower recognition accuracy because the fngertips and 
the shadows were occasionally obstructed by the dorsum or other 
fngers. From the shadow side, the contrast (or SNR) of the shadow 
was largely confned by the material of the surface. For example, a 
refective surface or a black surface (that absorbs most of the light) 
would lead to a signifcantly lower SNR from the camera’s view. 

To alleviate these problems and enhance the system robustness, 
possible solutions include: 1) compensating the ambient light with 
an active light source, 2) fusing camera data from diferent views 
(e.g., a global view or a third-person view) to reduce obstruction, and 
3) adopting a controllable wrist light source to construct additional 
optical features (e.g., the ficker of the light could be encoded or 
synchronized with the camera frequency to acquire diferential 
features between frames). All these potential solutions are worthy of 
further research to improve the system robustness of ShadowTouch. 

Moreover, further research on adapting ShadowTouch on dif-
ferent shapes of surfaces (e.g., vertical surfaces or surfaces with 
irregular geometries) is worthwhile. From our empirical observa-
tion, touching vertical surfaces yielded similar shadow features to 
the samples with high-raised wrist ( 4cm), open palm, and large 
camera incident angle (e.g., >60 degree) in our dataset, which is with 
least obstruction and easy to recognize. Irregular geometries would 
lead to partial deformation and artifacts of the shadow features. We 
believe collecting more diverse data and conducting more detailed 
evaluations regarding diferent surfaces is of great practical value. 

7.2 Form Factor and Power Consumption 
Currently, ShadowTouch is implemented in a single-hand mode 
with a visible light source, mainly to validate the computational 
feasibility of the optical design and the algorithms. In our prototype, 

we simplify the setting with a normal LED, considering: 1) the 
convenience of debugging and monitoring with shadows and 2) no 
need for customization of the camera. In our implementation, we did 
not have a special design to alleviate the ambient light interference 
(e.g., the shadows from ambient light near fngertips existed for a 
portion of samples), mainly to improve the robustness of our model 
against ambient light interference. We believe adopting invisible 
light could further improve the system’s performance and be more 
applicable for AR scenarios for not disturbing the user’s attention. 
Also, further work on modifying ShadowTouch into a two-hand 
version is essential to achieve better usability with the support of 
two-handed interaction. 

Regarding the computational cost, currently, we prototyped our 
algorithms on a PC with strong computational performance to guar-
antee the pipeline running at a constant frame rate. Our results 
have shown that light-weighted models chosen for our pipeline (to-
tal params for two stages less than 10M) could achieve a promising 
performance. Moreover, reusing the hand tracking results of the 
HMD to substitute the hand tracking stage in our pipeline could 
further reduce computation. Therefore, we believe ShadowTouch is 
capable of deployment on commodity VR and AR devices. Further 
optimizations such as quantization on the parameters [8, 9] could 
further reduce computational cost. 

8 CONCLUSION 
We present ShadowTouch, a novel vision-based sensing technique 
to recognize the touch states with a surface for individual fngers by 
constructing recognizable shadow features that magnify the subtle 
near-surface fnger movement with a wrist-mounted light source. 
Taking advantage of ShadowTouch’s unique optical design, the sub-
tle vertical movements of near-surface fngers are cast to shadows 
on the surface, which are highly recognizable for the event a light-
weight computer vision model. We also discussed and demonstrated 
the applicability of ShadowTouch by outlining the interaction space 
and developing application prototypes. The uniqueness of Shadow-
Touch sheds light on the following two aspects: 1) we presented a 
vision-based solution to recognize the near-surface touch state for 
individual fngers enhanced by wrist-projected shadows, reaching 
a cross-user accuracy of 99.1% and an F-1 score of 96.8%, which 
showed good applicability in our usability evaluation study; and 
2) through the practice of ShadowTouch, we demonstrated such 
a methodology of auxiliary optical feature construction is simple 
but efective in exploiting the potentials of vision-based sensing 
techniques. We believe our work would play an essential role in 
facilitating physical-aligned hand interactions for mixed reality in 
the future. 
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Table 2: Descriptions of atomic interactions in four applications and their categorization. 

Index Application Atomic Interaction Description Gesture Type 

1 Home Navigator move cursor with index fnger single-fnger swipe 
2 Home Navigator click on an APP icon with index fnger single-fnger touch 
3 Home Navigator swipe index fnger and middle fnger up to return to the home multi-fnger gesture 
4 Home Navigator swipe index fnger and middle fnger down to return to the last app multi-fnger gesture 
5 Home Navigator swipe index fnger and middle fnger left/right to switch app multi-fnger gesture 
6 Photo Album swipe index fnger left/right to switch to next/previous images single-fnger swipe 
7 Photo Album move thumb and index fnger to zoom/rotate/pan the image. multi-fnger gesture 
8 Whiteboard tap with diferent fngers to choose color and brush size single-fnger touch 
9 Whiteboard draw/erase with diferent fngers single-fnger swipe 
10 Text Editor Type with index fnger single-fnger touch 
11 Text Editor move cursor with middle fnger single-fnger swipe 

Table 3: The template scripts used by the experimenter to guide the user study tasks in four applications. 

Application Instruction 

Application 1: Home Navigator 
1. Move the cursor with index fnger over a [APP Name] app icon. 
2. Tap with index fnger on the [APP Name] app icon to launch the app. 
3. Swipe up with index fnger and middle fnger to return to the home. 
4. Swipe down with index fnger and middle fnger to return to the last opened app. 
5. Swipe left/right with index fnger and middle fnger to switch to the next/previous app. 

Application 2: Photo Album 
1. Swipe left/right with index fnger on trackpad to switch to the next/previous photo. 
2. Move thumb and index fnger on trackpad to zoom/rotate/pan the image. 
3. Find the image of [Animal]. 
4. Zoom in on [Body Part] of the [Animal]. 

Application 3: Whiteboard 
1. Thumb, index fnger, and middle fnger can all be used for painting. Each fnger can be bound with 

diferent brush style. Brush style will be displayed in the form of cubes foating around fngertips. 
2. Tap on control panel to choose brush size and color for the touching fnger. 
3. Choose [Color] with index fnger. 
4. Draw [Object1] in the middle of the canvas. 
5. Choose [Color] with middle fnger. 
6. Choose [Brush Size] with middle fnger. 
7. Draw [Object2] with middle fnger. 
8. Choose the eraser with thumb. 
9. Erase [Object1] or [Object2]. 

Application 4: Text Editor 
1. Type with index fnger. 
2. Move the cursor by swiping middle fnger leftwards/rightwards on keyboard. 
3. Enter "[Word1] [Word2]" in the input box. 
4. Move the cursor between two words. 
5. Delete "[Word1]". 
6. Enter "[Word3]" at the beginning of the line. 
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