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ABSTRACT
While search is a common need in Virtual Reality (VR) applica-
tions, current approaches are cumbersome, often requiring users to
type on a mid-air keyboard using controllers in VR or remove VR
equipment to search on a computer. We first conducted a literature
review and a formative study, identifying six common search needs:
knowing about one object, knowing about the object’s partial de-
tails, knowing objects with environmental context, knowing about
interactions with objects, and finding objects within field of view
(FOV) and out of FOV in the VR scene. Informed by these needs,
we designed technology probes that leveraged recent advances in
Vision Large Language Models and conducted a probe-based study
with users to elicit feedback. Based on the findings, we derived
design principles for VR designers and developers to consider when
designing a user-friendly search interface in VR. While prior work
about VR search tended to address specific aspects of search, our
work contributes design considerations aimed at enhancing the
ease of search in VR and potential future directions.

CCS CONCEPTS
• Human-centered computing → Participatory design; Vir-
tual Reality.
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1 INTRODUCTION
With the ongoing development of search engine technology, online
information retrieval and photo recognition searches for target
objects have become ubiquitous. In the VR field, with the popular-
ization of VR devices and the development of the metaverse concept,
an expanding number of VR applications containing a multitude
of objects have been developed. Many metaverse open-world plat-
forms allow users to upload and build models, further complicating
the VR space with diverse visual and textual information. When
users encounter this information, they seek to understand the ob-
ject in front of them, determine how to interact with it, or locate
the target object. This trend has led to searching in VR becoming
an increasingly common requirement, akin to the real world.

Searching in VR generally refers to the act of looking for infor-
mation, objects, or locations within a virtual environment using VR
technology [33, 41]. This can involve the use of gestures, gaze, text
input, voice commands, or other forms of interaction to navigate
and explore the VR environment and find what one is looking for
[48]. The goal of searching in VR is to provide an immersive and
intuitive experience that enables users to easily find what they need
without disrupting the sense of presence and immersiveness. Previ-
ous literature has focused on specific aspects of VR search, such as
information retrieval or searching for specific targets within a 3D
space [8, 41, 50]. However, the works on information retrieval in
VR have mainly focused on adapting 2D search strategies within
3D environments, in the form of interacting with a 2D search web
window in 3D space, which fails to address the nature and possibil-
ities of VR spaces. Consequently, no comprehensive work presents
a VR search interface across different scenarios. VR users typically
interact with 3D objects that may convey different meanings from

https://doi.org/3641825.3687742
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various angles and can perform actions that are impossible in the
real world. It is essential to develop a VR search interface that takes
into account the unique features of VR technology.

In practical applications, the closed nature of individual VR pro-
grams and the absence of a cross-application VR search interface
limit users to searching for information within the confines of the
current application’s search functionality. Often, users must exit the
application to search—either by switching to a VR browser search
engine or removing the headset to use other devices—thereby dis-
rupting the immersive experience and significantly affecting user
experience [23].

Recently, the emergence of large language models, such as Chat-
GPT, has promoted the development of LLM-based conversational
search tools. Unlike traditional search engines that only provide a
list of websites, LLM-based search tools first understand the query,
then absorb information from relevant websites, and finally provide
a coherent response that integrates reference information frommul-
tiple sources for verification. From a user experience perspective,
LLM-based search systems engage in conversational interactions
with users, rather than simply presenting a list of search results.
They offer more intelligent responses by comprehending the user’s
language and context [22, 36].

With the emergence of Vision Large Language Models (Vision
LLMs) and their ability to process multi-modal data, LLMs can play
a key role in the collection of user input, as well as the retrieval of
information that is not pre-programmed into the virtual world [42].
However, current research on LLM-driven search systems remains
predominantly focused on 2D interfaces, with limited exploration
of virtual 3D scenes.

In summary, although searching is a common requirement in
virtual reality applications, the current method remains cumber-
some. Leveraging the visual understanding capabilities of Vision
LLM in the design of a VR search interface can address this prob-
lem. However, the current research on user needs in VR search and
interface interaction design is not well understood. Based on this,
we sought to answer the following two research questions (RQs):

• RQ 1: What search difficulties do users meet in the current
VR experience, and how do they solve them?

• RQ 2: What elements should be considered when designing
a VR search interface leveraging Vision LLMs?

In this paper, we first performed the literature review of the
work that identifies critical issues in VR search; then, we conducted
a formative study (N=10) to gain a deeper understanding of how
people search, and the pain points they face. Based on the findings
of the formative study, we further examined literature in related
fields to identify potential solutions and designed six probes lever-
aging Vision LLMs. We then conducted a probe-based participatory
design workshop (N=11) to explore people’s preferences and expec-
tations for VR search interactions, gather feedback, and co-design
new solutions. Finally, we present the findings and propose design
principles.

The contributions of this research are:

• We present users’ VR search practices, their challenges dur-
ing the VR search activities, and their insights on potential
solutions.

• We present a series of design probes leveraging Vision LLMs
for each search intention.

• Using the probes, we present VR search interface design
principles based on feedback.

2 RELATEDWORKS
We first demonstrate that current research on VR search primarily
focuses on transferring 2D interfaces into 3D spaces, with limited
exploration of how search tasks interact with 3D objects and the
direct presentation of information within 3D spaces. Subsequently,
we highlight the advantages of Vision LLM, in performing visual
understanding tasks and the possibility that they can be applied to
VR search tasks. Finally, we illustrate the great potential of LLM-
powered search systems in enhancing VR search capabilities.

2.1 Challenges in VR Search
The VR search task consists of two main components: formulating
search queries and presenting search engine results. While existing
studies have investigated methods of presenting search engine
results in VR [32], such as techniques in shopping scenarios and
the arrangement of search results [42, 43], there is a notable gap
in understanding how to craft search queries within the VR space.
Yang et al. [48] highlighted the differences between information-
oriented web search and space-oriented VR search in terms of
components, interfaces, and data representation. Unlike web search,
VR search needs to accommodate 3D models instead of hyperlinks,
with data presented inways that support 3D representations derived
from 2D input. Another challenge in VR search, which Yang et al. did
not address, is spatial search—locating targets within the VR space.
Gao et al. [8] introduced a method using bimanual haptic feedback
for spatial search, demonstrating improvements in task completion
time, accuracy, and user perception compared to existing methods
like spatial audio. However, these explorations have predominantly
focused on textual queries. Interacting with diverse objects within
the immersive VR environment and leveraging these objects or
contextual information for search queries remain underexplored.
Therefore, our research aim to explore how to design user-centered
search interaction interfaces in VR that address these challenges.

2.2 Vision Large Language Models
Visual Large Language Models like Shikra [5], VisionLLM [40], and
Qwen-VL[2] are advanced LLMs that excel in visual tasks such
as object recognition, contextual question answering, image cap-
tioning, and task instruction [40]. Some studies have attempted to
use Vision LLMs for visual search, helping users find information
more efficiently within 2D graphical interfaces [45]. Specifically,
Vision LLMs have assisted visually impaired individuals in access-
ing visual information, using semantic segmentation and visual
understanding, and providing auditory prompts [49]. However, de-
spite the significant potential of Vision LLMs in these tasks, their
application remains largely confined to processing 2D images. In
real-world and virtual reality (VR) environments, search tasks often
involve recognizing and interacting with 3D objects, yet current
Vision LLMs are not equipped to handle 3D objects, presenting a
new challenge for these models.
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To address these challenges, some research has begun exploring
the integration of 3D worlds into large language models. For exam-
ple, by using 3D point clouds to represent 3D environments and
fine-tuning the Vision LLMs, they can perform more complex tasks
such as 3D grounding, 3D-assisted dialogue, and navigation [12].
Additionally, other studies have focused on capturing and rendering
scenes from virtual worlds to feed into Vision LLMs. For instance, in
architectural design, Vision LLMs have been used to help architects
predict how users might experience a space in 3D [1]. Although
these models still rely on static images as input, their application
in 3D environments demonstrates the potential for Vision LLMs
to expand into more complex scenarios. In summary, while Vision
LLMs have made significant progress in 2D tasks, their application
in 3D virtual spaces is still in its early stages. Particularly in the
context of VR, conducting searches remains an open question, and
we will further explore how to extend the capabilities of Vision
LLMs to support 3D object searches within VR environments.

2.3 LLM-Powered Search Systems
The popularization of ChatGPT has led to the emergence of conver-
sational search interfaces [22, 39]. Since the public release of Mi-
crosoft Bing Chat and Google Bard in 2023, the number of monthly
users of LLM-powered search systems has exceeded hundreds of
millions [20, 22, 34]. Unlike traditional search engines, which only
provide lists of websites, LLM-powered search engines first under-
stand the query, then assimilate information from relevant websites,
and finally provide a coherent response that integrates references
from multiple sources for verification. From a user experience per-
spective, LLM-powered search systems engage in interactive dia-
logues with users rather than merely presenting a list of search
results. They deliver smarter and faster responses by understand-
ing the user’s language and contextual content [22, 36]. However,
current research on LLM-powered search systems still primarily
focuses on 2D interfaces, with limited exploration in virtual 3D
scenes, this paper aims to provide design considerations for VR
search interfaces through Vision LLMs.

3 METHOD
To address our research questions, we conducted two studies. The
first was a formative study to explore people’s current search prac-
tices and challenges in VR scenes. Then, a probe-based participatory
design workshop will be held to explore people’s preferences and
expectations for VR search interactions. We have summarized our
findings as design insights and considerations for future VR search
interaction designs.

3.1 Formative Study
3.1.1 Participants. We recruited 10 participants through personal
networks and snowball sampling. Inclusion criteria required par-
ticipants to have experience with VR and be willing to share their
experiences. Participants’ ages ranged from 18 to 42 (mean = 26.7,
median = 24.0, SD = 7.82), with VR experience spanning from 1
year to 8 years (mean = 4.3, median = 4.0, SD = 2.33). Tab. 1 in
Appendix A.1 shows more details of the participants. Primarily,
participants reported using VR for gaming, development, and social

purposes. We conducted a total of 10 individual interviews, each
lasting 30 minutes.

3.1.2 Formative Study Process. The semi-structured interviews
were conducted both online and in-person. Initially, we provided
participants with an overview of the research context and session
structure, addressing any questions or concerns they had, and Ap-
pendix A.2 provides interview questions. Consent for audio record-
ings was obtained before each session. Our objective was to delve
into participants’ current VR search practices, their overall experi-
ences with searching in VR, any challenges they faced, and their
viewpoints on potential solutions.

3.1.3 Needs and Challenges. We categorized the probes based on
two search needs identified from both the formative study and
relevant literature: Knowing Object (KO): these behaviors include
reading information relevant to the object to enhance people’s
understanding of the object [24, 30], and learning about the tutorials
or interactionmethods of the virtual object [17, 29]. FindingObject
(FO): these behaviors involve two task types: in-view searching
and out-of-view searching. In-view searching involves objects or
interface elements that users can see directly within the current
field of view (FOV) without head movement. Out-of-view searching
involves targets outside the current FOV that require head or body
movement or interaction methods like controllers to be seen [6, 11,
18, 25]. Previous research has shown that two kinds of searching
have a significant effect on users’ search strategies; in-view targets
are typically easier to recognize and select quickly, whereas out-of-
view targets may require users to engage in more complex search
strategies and spatial memorization, and it may be necessary for
the designer to provide additional visual or auditory cues to help
users locate these targets [11, 13].

3.2 Probe Design
The probe is developed to address challenges from the formative
study, seeks participant feedback in a participatory design work-
shop. We chose Vision LLM as the technical foundation for two
main reasons: it intuitively interacts with users through natural
language, and unlike text-based LLMs, it comprehends contextual
information from images, enabling us to address a wider range of
search challenges in VR. Based on our formative study and previous
literature, we designed six VR search probes leveraging Qwen-VL1
Vision LLM, and we placed these probes in three typical scenarios:
the garden, the hospital and the supermarket (Fig. 1- 6), which
are often seen in VR entertainment, simulation training and VR
shopping. The purpose of displaying our probes to participants was
to familiarize them with Vision LLM’s capabilities and fundamental
VR search interaction scenarios, thereby collecting preliminary user
feedback on our designs and stimulating further ideas during the
sketching phase. Probes (1)-(4) assist users in knowing objects in
VR, while probes (5)-(6) aid in finding objects in VR:

Knowing about one object (KO). As shown in Fig. 1, Probe 1 is de-
signed to help users know about unfamiliar objects in VR. The user
needs to select the object and use audio to input the query. Then,
the system automatically screenshots six view pictures and sends

1https://github.com/QwenLM/Qwen-VL
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Figure 1: Probe 1: (1) Select the object and use audio to input the query; (2) System automatically screenshots six view pictures
and sends them to Vision LLM along with the query; (3) Display 1: Vision LLM’s text results show along with the 3d object; (4)
Display 2: Label Display.

Figure 2: Probe 2: (1) Select the object; (2) Rotate the model and circle the detail to search; (3) Show the text result.

Figure 3: Probe 3: (1) Drag to screenshot the picture of the
scene; (2) Use audio to input the query and the system gives
the text feedback.

them to Vision LLM along with the query. The views are generated
to address the Vision LLM’s inability to process 3D objects, so to
improve results multiple views of the 3D object are submitted as
2D images. The Vision LLM returns textual results alongside the
3D object or in a label format. The label display method is inspired
by previous research [24] that uses label annotations associated
with specific objects to provide relevant information to the user. In
our probe, label display can reduce the reading burden of Vision
LLM’s text answer.

Knowing about the object’s partial details (KO). As shown in Fig. 2,
in probe 2, users can further investigate an object by rotating it
and circling the detail they wish to explore. The Vision LLM then
displays text results alongside a detailed picture. This detail search
functionality is inspired by the "Circle to Search" feature originally
proposed by Google and Samsung [7] for detail searches in 2D
images. In our probe, this function can meet the search needs about
the model’s details.

Knowing objects with environmental context (KO). As shown in
Fig. 3, Probe 3 allows users to take screenshots in VR and send the
image along with a query to the Vision LLM for results. Designed
based on findings from the formative study, this probe enables

context-sensitive searches in VR. Unlike Probes 1 and 2, screenshot
searches provide more contextual background information.

Knowing about interactions with objects (KO). As illustrated in
Fig. 4, users are able to select the equipment and enquire about its
usage in Probe 4. The results are displayed in three formats: Label
Display, Video Display and VR Animation Display.The label display
is inspired by [24], which is similar to Probe 1. The video display
method is inspired by the video tutorials commonly used by people
in the real world [14, 44]. In this probe, we display the video next
to the object to help people learn how to use it. In this probe, we
display the video next to the object to help people learn how to use
it. The animation display method is inspired by previous research
on VR tutorials, which use the animation of objects or virtual hands
to show the VR tutorial.[21, 51].

Finding objects within FOV (FO). As shown in Fig. 5, probe 5
is designed based on Vision LLM’s ability to comprehend picture
content. When users need to locate an object in view, the system
automatically captures a screenshot and sends it to the vision LLM,
which then displays the text results with picture annotations or
shows the annotations in a small window. This probe design is
based on the current Vision LLM’s ability to return annotation
results circled on the picture.

Find objects out of FOV (FO). As shown in Fig. 6, probe 6 is de-
signed to help users find objects that may be outside sight. Vision
LLM searches for the location in this probe based on the developer’s
prior knowledge given to the vision LLM. Then, the results will be
displayed using three methods: Penetration highlight, text along
with the model, and teleportation. This probe is designed based on
the users’ need in the formative study, which is that they sometimes
want to find an unseen object in the scene.
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Figure 4: Probe 4: (1) Select the equipment and ask how to use it; (2) Display 1: Label display; (3) Display 2: Show the teaching
video; (4) Display 3: Animation Demonstration.

Figure 5: Probe 5: (1) Audio ask where is the beer in the supermarket; (2) Display 1: Text + Picture; (3) Display 2: Audio feedback
+ small window picture.

Figure 6: Probe 6: (1) Audio asks where is the laundry detergent in the supermarket which is unseen. The Vision LLM will
check the prior knowledge of the scene and display the result; (2) Display 1: Penetrate Highlight; (3) Display 2: Model + text
description; (4) Display 3: Teleport the user in front of the laundry detergent and highlight the laundry detergent.

3.3 Participatory Design Workshop
This section aims to generate design considerations for VR search
interfaces leveraging Vision LLMs. We adopted a probe-based study
method instead of a full-functional prototype to involve participants
in the initial design phase for qualitative feedback [4]. The partici-
patory design workshop consisted of two phases (Fig. 7). In the first
phase, we introduced six probes to participants and gathered their
feedback. In the second phase, participants engaged in a co-design
workshop to sketch their ideal search interactions and scenarios,
which helped generate implications for future technologies [37].

Figure 7: Procedure of the participatory study

3.3.1 Participants. We recruited another 11 participants through
personal networks and snowball sampling. The participants ranged
in age from 18 to 45 years, with VR experience spanning from
0 to 8 years (mean = 3.45, median = 4.0, SD = 2.39), and Tab. ??
in Appendix B.1 shows more details of the participants. Seven
participants had more than three years of VR experience, while two
were novices, having used VR only once or twice. Each group of
1-2 participants was then divided into eight groups to participate
in the workshop.

3.3.2 Participatory Design Process. Our participatory design pro-
cess lasted approximately 40 minutes and included two phases.
Phase 1, Probe experience and feedback gathering: In this part,
we first let the participants watch an introduction video about our
research. The video introduces our research’s goal, Vision LLM’s
abilities, and some of our probes in the video format. The video is
intended to efficiently convey the research background and demon-
strate the capabilities of Vision LLM to the participants. After watch-
ing the video, we demonstrate and explain the design probes one
by one to them. For each probe, we ask for their feedback, what
they liked, what they did not, and what improvements they thought
could be made. Phase 2, Co-design session: we held a co-design
session with the participants. We engaged participants by remind-
ing them of the feedback and ideas in the probe experience process



VRST, October 09–11, 2024, Trier, Germany Liu et al.

of phase 1. This encourages them to propose modifications and
new functions that would improve the search experience in VR.
Additionally, we invited them to sketch their ideal use scenarios.

4 DATA ANALYSIS
In our research, we conducted semi-structured interviews with
participants across two phases: the formative study and the partici-
patory design workshop. For the formative study, we interviewed
10 participants, and for the participatory design workshop, we in-
terviewed 11 participants. All sessions were recorded on video, and
the content was transcribed using a commercial automatic speech
recognition (ASR) system, (iFlyrec2). The research team verified
the accuracy of the transcriptions to ensure reliability.

For both phases, four researchers independently applied open
coding to the transcripts, after initially familiarizing themselves
with the data. The research team then collaboratively discussed the
coding results, resolving any disagreements through iterative re-
finement. This process of grouping the codes allowed us to identify
overarching themes and subthemes that structured our findings.

Additionally, during the participatory design workshop, we col-
lected digital copies of sketches created by participants, which were
also analyzed in conjunction with the transcripts. The iterative
structuring of the codes into themes was conducted during weekly
meetings, where conflicts were resolved through discussion until
consensus was achieved.

Selected quotes from both phases were translated by the first au-
thor and subsequently reviewed by co-authors to ensure accuracy.

5 FINDINGS
We present our key findings of the two parts of our study to answer
two research questions, RQ 1: Based on part 1 of our formative
study, we show users’ needs and challenges during their VR search
activities and present their insights on potential solutions. RQ
2: Based on the part 2 of our participatory design workshop, we
summarized the design elements from five aspects.

5.1 The search difficulties users meet in the VR
experience and how they solve them

This section summarizes the findings from the formative study,
primarily answeringRQ1. We showVR search practices, the overall
experiences of users, the challenges they face during their search
activities, and their insights on potential solutions. These findings
provided the necessary basis for the design of probes.

5.1.1 Search Needs in VR. Participants in the study indicated vari-
ous scenarios in which they felt a need to search for information
while using VR. Common situations include encountering unknown
items or terminology within VR applications, needing assistance
with VR hardware or software issues, and seeking deeper insights
into VR content or gameplay strategies. For instance, participants
frequently mentioned the necessity to search when they come
across unfamiliar objects or when they need clarifications during
VR experiences such as games, scientific research, and experimental
setups. Additionally, the need for real-time information retrieval be-
comes critical when participants face technical challenges, such as
2https://www.iflyrec.com/zhuanwenzi.html

hardware recognition errors or software malfunctions. The demand
for search capabilities also extends to social interactions within
VR, where participants wish to quickly find information relevant
to their conversations without having to disrupt the immersive
experience by removing the headset or switching applications.

5.1.2 Current Search Practices in VR. Participants described a range
of search practices within VR environments, including using the
virtual keyboard within the VR browsers and removing the VR
headset to use other devices, such as mobile phones, for search-
ing. In both cases, searching requires temporarily exiting the VR
immersion to launch a separate search engine interface. The most
prevalent method among our participants was physically removing
the VR headset to use external devices for searching. For example,
P1 stated:

"If it’s a standalone application, I take off the VR HMD
and use my phone; I do not use VR’s browser because
typing is very inconvenient."

Similarly, P2 mentioned:
"The only solution is to remember the content inside
the VR space and then take off the HMD to search on
a phone or computer."

5.1.3 Challenges with Current VR Search Interfaces. Participants
reported significant disruptions to their immersive experience due
to the inadequacies of current VR search interfaces and input meth-
ods. The necessity to alternate between VR and real-world devices
is a major impediment. P3 highlighted the disruptive nature of this
practice:

"Taking off the helmet is a physically and mentally
draining process; it affects focus and repeatedly doing
so breaks immersion."

Participants also expressed dissatisfaction with the available VR
browser interfaces and input methods, which they found cumber-
some and inefficient. P4 criticized the current state of VR search
tools:

"I don’t use VR’s browser for searches; it’s cumber-
some and breaks my focus on the task at hand."

5.1.4 Desired Improvements and Potential Solutions. Participants
provided valuable insights into potential improvements that could
enhance the search experience within VR environments. There is
a unanimous demand for more seamless and user-friendly search
tools that integrate directly into the VR interface, minimizing or
eliminating the need to disrupt immersion. P5 sees potential in
voice-activated searches:

"I would prefer to use a voice command to initiate
searches without interrupting my activity or remov-
ing the headset."

P6 suggested an integration of context-sensitive searches:
"It would be beneficial if the search could be con-
text sensitive and provide information based on the
specific activity I am engaged in within the VR envi-
ronment."

P3 emphasized the need for advanced input methods:
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"We should explore touchless input methods such
as eye tracking or gesture recognition that allow for
more natural interactions within VR."

5.1.5 Summary. The findings reveal a critical gap in the VR tech-
nology pertaining to user-friendly and efficient search functional-
ities. The current need to frequently switch between virtual and
real-world interfaces significantly hampers the immersive VR ex-
perience. Participants advocate for the development of integrated
search tools that are both efficient and capable of maintaining
immersion, with suggestions favoring voice commands, context-
sensitive searches, and improved interaction methods. Acknowl-
edging users’ current challenges in searching, we designed probes
based on literature to further explore people’s preferences and
expectations for VR search interactions.

5.2 Elements that should be considered when
designing VR search interfaces leveraging
Vision LLMs

This section summarizes the findings from the participatory design
workshop, primarily answering RQ 2. From the probes presenta-
tion phase, through participants’ feedback, we confirmed that six
types of VR search probes can help users address search needs and
challenges in the formative study. Based on the sketches and inter-
view results from the co-design workshop phase, we summarized
the design elements from five aspects: input interaction, output
display, context-sensitive and intelligent recommendation, user
participation in editing search results, and search tool anthropo-
morphization.

5.2.1 Input Interaction. Habit Transfer and Consistent User Inter-
face: Habit transfer emphasizes how users apply familiar behaviors
and operations in a new interface, while cross-device consistency
focuses on providing a consistent user experience across different
devices and platforms, making it easier for users to adapt to new
systems. Participants (N=5) suggested that in addition to using
a controller for selection, search tasks could also be performed
through gestures, such as pointing at the target object with an
index finger and combining it with voice queries. Other methods in-
clude using center-of-vision positioning or eye-tracking to initiate
queries. P2 highlighted the potential of gesture and eye-tracking
input:

"Can input be with the finger or with eye tracking."
Some participants (N=3) highly endorsed using a search method
similar to taking a screenshot on a smartphone and circling the area
of interest. This approach is consistent with smartphone operations.

Efficiency is Important: Most participants (N=7) emphasized
the importance of interaction efficiency. Some participants (N=4)
preferred fewer interactions and faster system response times. Some
participants believed the search should already have been preloaded
and not initiated by the user.

5.2.2 Output Display. Integration of Search Results with the VR
Scenes: As shown in Fig. 1, in the Probe 1 garden scene, there are
two ways to display the text results: Display mode 1 is shown in the
form of a window UI; Display mode 2 is to classify the retrieved text
and finally display it in the form of expandable labels. According to

our survey results with participants (N=8), text visualization should
be harmonized with the 3D environment to reduce users’ cognitive
and reading burdens. For instance, users can easily identify and
understand key data by integrating information labels in a non-
intrusive manner within the scene while maintaining situational
awareness. P5 and P6 expressly stated their preference for labels
over text:

"I like the label better. Because it is clearer than a
paragraph of text, users can choose the information
they want."

P11 added the importance of organized labels:
"Labels are an ideal display method as they do not
obstruct the view significantly. Labels are more or-
ganized, allowing users to grasp useful information
quickly."

Dynamic Presentation of Generated Results: In the hospital sce-
nario, we showed the participants the probe 4: Select the equipment
and ask how to use it (Fig. 4). Some participants (N=3) Highlighted
that presenting related content, such as images or videos, like tradi-
tional search engines, can disrupt the immersive experience in VR
spaces. Instead, dynamically generating and displaying animations
within the scene can significantly enhance immersion. P4 noted
the immersive advantage of animations:

"Animation and video are similar. However, users like
animation more because it is more immersive and
direct."

5.2.3 Context-sensitive and intelligent recommendation. Participants
(N=5) believe the search interface should be designed to be contex-
tually aware, offering relevant suggestions and results based on the
current VR environment and application. This ensures users receive
information tailored to their immediate context, enhancing their
interaction experience, and the Fig. 9 Redrawn co-design workshop
sketches in Appendix B.2 show this. P2 highlighted the need for
flexible layout and accuracy verification:

"Does not prefer a single, unified layout. It is useful
to consider different types of inputs and scenarios
and provide context-relevant outputs. When using
LLMs, should be able to determine the accuracy of
the output."

P3 emphasized the need for advanced input methods:
"Desires different information presentation methods
for different search goals. For example, provide inter-
active animations for ’how to use’ queries and use
labels for detailed information about target models."

P7 and P8 stressed the importance of adaptive labeling:
"The system should continuously learn from users
to improve labels. Different objects and users should
have different labels. Incorrect labels can lead to user
distrust."

5.2.4 Users participate in editing search results. Some participants
(N=5) believe an effective VR search system should incorporate
user feedback, collaborative learning, and participatory content
refinement mechanisms. Also, the Fig. 9 Redrawn co-design work-
shop sketches in Appendix B.2 could show this. The system may
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enhance the overall user experience and foster a more engaged and
interactive community by enabling users to contribute actively to
content accuracy and relevance. P7 and P8 suggested a continuous
improvement through user feedback:

"There needs to be some feedback channel for users to
submit, and the system needs to learn from the users
to improve the label constantly."

P9 and P10 highlighted the importance of multi-user interest and
recommendations:

"Other users will be interested in this object. Can you
recommend what other search?"

P11 emphasized the role of user involvement in ensuring description
accuracy:

"If the system is Internet accessible, it should involve
the users in the precision of the description."

5.2.5 Search tool anthropomorphization. Some participants (N=3)
mentioned that, based on the immersive characteristics of VR spaces
and Vision LLMs’ capabilities, the VR environment search tool could
be anthropomorphized into a guide avatar. Users could ask ques-
tions in natural language and receive direct answers from the guide
avatar, which aligns more closely with real-world intuition and per-
ception. Additionally, giving the search tool a persona encourages
users to build trust with the system and increases their willingness
to interact. This is particularly beneficial in VR environments where
immersion is crucial. P3 suggested envisioning the search tool as
an intelligent voice assistant: "Think about Jarvis, the Ironman as-
sistant." P11 supported the idea of representing the VR search tool
in the form of avatar:

"It is possible to think of this search function as a
person you just have to ask for, just like in the real
world."

6 DISCUSSION
We first present the key takeaways of our research and our key
contributions in Section 6.1, and then we further discuss the design
considerations based on our findings in Section 6.2. Finally, we
present two demonstration scenarios in Appendix C Fig. 10 that
illustrate the application of our design implications and considera-
tions in practice.

6.1 Key Takeaways
Based on our formative study, we found that while search is a com-
mon need in VR applications, current approaches are often time-
consuming and labour-intensive. Developing integrated search
tools that maintain immersion while favoring voice commands,
context-sensitive searches, and improved interaction methods is es-
sential. The emergence of Vision LLMs has significantly enhanced
search capabilities in 2D spaces, bringing great convenience to
users. This advancement inspired us to explore the possibility of
combining Vision LLMs with VR 3D spaces for search tasks. How-
ever, the design of a VR search interface leveraging Vision LLMs
remains largely unexplored. Therefore, we combined the findings
from our formative study with previous research on search inter-
faces to identify six common search needs in VR environments and
designed corresponding solution probes using the Qwen-VL Vision

LLM. We then recruited participants to explore these probes, gath-
ered their feedback, and engaged in co-design sessions to discuss
VR Search Interface Design Suggestions and Ideas. These include:
input interaction, where participants emphasized the need for con-
sistent search operations across devices, suggesting voice queries
and gesture-based searches (e.g., pointing and speaking); output
display, where search results should be seamlessly integrated into
the scene (e.g., labels around objects) without disrupting immer-
sion; context-sensitive and intelligent recommendations, where
the search interface should offer relevant suggestions and results
based on the current VR environment; user participation in editing
search results, incorporating feedback, collaborative learning, and
participatory content refinement mechanisms; and VR interface
morphology, where anthropomorphizing the search tool as a wizard
avatar aligns with real-world intuition (e.g., asking questions and re-
ceiving answers or demonstrations directly from the avatar). These
insights can guide the design of VR search interfaces, enhance user
experience, and maintain immersion.

6.2 Design Implications and Considerations
6.2.1 Scene Context Construction: Aligning Objects, Scenes, and Text
Descriptions. Our research indicates that to improve search accu-
racy in VR, developers can create a comprehensive scene knowledge
database to provide Vision LLMs with sufficient context. As LLMs
are often black-box models that may struggle to capture factual
knowledge accurately, they can produce incorrect results when
given isolated data [3, 15]. Therefore, constructing a well-defined
scene context is essential to ensure reliable information. For ex-
ample, developers can use knowledge graphs, which can be used
to store scene information and objects within the scene and their
textual descriptions [26]. This database may facilitate contextually
relevant search tasks within the scene, enhancing the user’s search
experience by supporting associative search queries.

6.2.2 Context-Sensitive Information Retrieval . As indicated by
Section 5.2.3, participants believe the search interface should be
context-aware, offering relevant suggestions and results based on
the current state and environmental information. So our findings
suggested recording context-sensitive information in VR, which
could enhance the relevance of search results through real-time
contextual and query contextual relationships [35], and it can help
LLMs more accurately understand and process user input and thus
respond more aligned with user needs [16, 46]. Here, we borrow
the key information factors in the XAIR interpretive AR framework
to categorize context-sensitive information into three categories
for VR [47]: User State: This includes tracking user behaviour,
attention, and potential intent. Understanding the user’s focus and
actions within the VR environment helps tailor search results to
their current needs and interests. Scene Information: This encom-
passes spatial coordinates, the current scene’s semantic meaning,
and the user’s field of view semantics. Accurate scene information
ensures that the search results are relevant to the user’s current
context within the VR environment.User intent: The search mech-
anism should understand user intent so the system can determine
the next best action based on the intent.
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6.2.3 Executing Search Paths Based on User Input Modalities and
Executing Display Actions Based on the type of Search. Our findings
reveal that participants have high expectations for the VR search
system’s ability to understand user intentions. While users may
not always actively input prompts when handling visual search
tasks, the system could intelligently assess the input content to
determine the appropriate course of action, illustrated by the exam-
ples below: Visual Information Only, No Prompt Input: When
the user provides only visual information without an accompany-
ing prompt, the system leverages context-sensitive information to
generate a relevant prompt via Vision LLMs, which then process
this prompt to produce text-based search results. Visual Infor-
mation with Prompt Input: When the user provides both visual
information and a prompt, the system integrates these inputs with
context-sensitive information to refine the prompt. Vision LLMs
then process the refined prompt to deliver precise text-based search
results. Text and Audio Prompt: In scenarios where the object is
out of view, making visual input impossible, users should be able
to initiate the search using text or audio input alone.

Depending on the question types, different disply actions should
be triggered: Object Identification Questions: If the user asks
about the identity of an object, the system triggers the labels dis-
play action. This action generates multiple labels around the target
object and arranges them in order. Object Interaction Questions:
If the user inquires about how to interact with an object, the sys-
tem triggers the animation display action. Vision LLMs generate
interaction animations and logic to demonstrate how to interact
with the object. By establishing a mapping between input content
and action paths to understand user intent and execute tasks, the
complexity of these actions can be concealed, making them easily
accessible to non-skilled users [9].

6.2.4 Enhancing Search Results through User Feedback. As shown
in Section 5.2.4, participants emphasized the importance of the
feedback function for search results. This feature is especially vital
because LLMs can sometimes generate hallucinations that distort
accuracy, and pre-trained models may include outdated content
[3, 15]. So the system could provide users with the ability to review
the search results, make corrections to mistakes or add information
via audio or text. For example, setting up direct feedback buttons,
interactive scoring systems or pop-up feedback forms, allows users
to quickly assess the quality of the answers and collect more de-
tailed user feedback by evaluating the search results as "useful"
or "unhelpful," rating the results (e.g. 1-5 stars), and providing de-
tailed comments after a certain number of interactions. In addition,
implicit feedback mechanisms can also be used, such as providing
two or more results for each search task, using logs to record the
user’s selection order and reading or listening time, then building a
planning model to improve the relevance of search results [19, 38].

6.2.5 No disruptions to immersive experience. Our findings revealed
that keyboard input or jumping other windows to make a search
action may affect the user’s ability to perform other tasks in VR.
Therefore, using a natural user interface (NUI), such as voice com-
mands, eye movements combined with the controllers, or specific
gestures to initiate search commands can significantly enhance the
user’s immersion [27, 28]. For example, the method of selecting an
area by drawing a circle, which is commonly used in mobile phones,

such as TapTell and Google Circle to Search [10], has been verified
in mobile visual search tasks and can effectively improve the user
experience [31]. This interaction method can also be migrated to
VR search tasks, using a controller or gestures combined with voice
commands to prompt the visual information to the Vision LLMs.
Moreover, our findings suggested that the display of search results
should not obstruct the user’s FOV. The results can be divided into
labels and surrounded by the search object target. In addition, the
display method should also be determined based on the type of
search and the content of the search. For example, in the task of
knowing about interactions with objects (KO), the interaction meth-
ods can be displayed in the form of a model animation, so that the
search task does not destroy the immersive experience of VR.

6.3 Limitations and Future Work
Our study has several limitations that future work should address.
We did not evaluate the effectiveness of Vision LLMs in handling
context-sensitive questions within VR, partly due to technical con-
straints that prevented the full deployment of their functions in
our probes. Additionally, while we based our assumptions on the
capabilities of Vision LLMs as described in peer-reviewed papers,
their full potential still needs to be explored. The issue of hallucina-
tions in LLMs, which can result in errors, underscores the need for
multiuser participation to help correct inaccuracies. Future research
should focus on developing working prototypes and conducting
both qualitative and quantitative evaluations. We have identified
a gap in the current research, and addressing this will be crucial
for defining how VR search mechanisms can be effectively imple-
mented, whether as a plugin or a core system feature.

7 CONCLUSION
In this study, we summarised the current VR search needs and
challenges faced by users through a formative study, and designed
six probes to address these challenges based on previous research
and the capabilities of Vision LLMs. We then conducted a partici-
patory design workshop, and based on the participant’s feedback,
we obtained five design considerations for VR search interfaces.
In summary, our work represents a foundational step in exploring
the design of VR search interfaces and could offer guidance for
designers and developers moving forward.
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A APPENDIX: FORMATIVE STUDY
INFORMATION

A.1 Demographic information table

Table 1: Demographic of formative study participants (N=10)

ID Age Experience
(years)

Frequency Purpose

P1 23 8 3-4 times per week Development, game
P2 22 2 4-5 times per year Game
P3 24 1 2-3 times per month Development
P4 24 2 2-3 times per year VR research participant
P5 18 3 Everyday VR Chat
P6 25 4 2-3 times per week Development
P7 40 8 3 hours per month Game, new applications
P8 42 5 20 hours per month Work, social VR
P9 25 4 10 hours per month Game, VR Chat, teaching
P10 24 6 5 times per week Development

A.2 Semi-structured interview questions
(1) What do you usually use VR devices for?
(2) Do you have any search needs in VR (similar to your search

needs on PC and mobile phones)? Have you ever conducted
a search within standalone VR applications, and if so, for
what purposes?

(3) When you encounter a search need in VR, what is your
current solution? Why did you choose this method?

(4) Does the current solution you use affect your immersive
experience? Why or why not?

(5) In VR, how would you prefer to search for a target object,
image or text? Why?

(6) Suppose you want to learn about the green object in the VR
scene without exiting the current application, as shown in
Fig. 8. Howwould you prefer to search for it? (any interaction
modality or method is acceptable)

Figure 8: Semi-structured interview sixth question scene
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B APPENDIX: WORKSHOP INFORMATION
B.1 Demographic information table

Table 2: Demographic of workshop participants (N=1)

ID Group Age Range Experience (years) Occupation
P1 1 41-45 5 Game Developer
P2 2 18-25 5 Postgraduate Student
P3 3 36-40 4 Product Owner
P4 4 18-25 1 Postgraduate Student
P5 5 18-25 0 year, only 1-2 times Postgraduate Student
P6 5 18-25 0 year, only 1-2 times Postgraduate Student
P7 6 18-25 1 College graduate
P8 6 26-30 4 Creative technologist
P9 7 18-25 5 VR game player
P10 7 18-25 7 VR researcher
P11 8 18-25 6 VR researcher; VR Game developer

B.2 Co-design sketches

(a) P4 Intelligent recommendation: Describes a version of the
story from search input to search presentation, where the labels
of search results are presented according to a recommender sys-
tem

(b) P3 Context sensitive: Describes a golfing scenario for a search
task

Figure 9: Redrawn co-design workshop sketches
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C APPENDIX: AN EXAMPLE OF VR SEARCH
APPLICATION SCENARIO

Figure 10: An example of VR search application scenarios
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