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Abstract
Analyzing users’ attention distribution is an effective way to evalu-
ate whether the primary UI content captures users’ engagement.
This has led to the development of eye trackers that gather data
on users’ attention, as well as computational models that simulate
this distribution on individual UI screens. However, there is limited
research on how users’ attention distribution correlates with the in-
tuitiveness of goal-oriented UI navigation. Additionally, simulating
user attention as they reason and identify the correct UI element to
navigate to the target screen remains unexplored. To address this
gap, we introduce an AI-driven model, the UI Link Transformer
(UILT), which predicts users’ attention distribution as they navi-
gate from the current UI screen to the target UI screen. This model
helps designers to evaluate the intuitiveness of UI navigation. Our
initial study aimed to understand how users typically identify the
UI element that links two consecutive UI screens and how this
identification relates to the intuitiveness of the UI navigation de-
sign. The insights gained from this study offer designers actionable
recommendations to improve the intuitiveness of mobile GUI navi-
gation, with a focus on users’ attention distribution. Moreover, the
dataset collected during this study supports the development of the
UILT. Building on the insights and data from the initial study, we
designed, trained, and evaluated the UILT.
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1 Introduction
Navigating through multiple graphical user interface (GUI) screens
is crucial for enhancing user experience, engaging users effectively,
and often determines the broader success of smartphone appli-
cations [41]. Analyzing visual attention patterns from users is an
effective method to assess whether the UI design successfully guides
users’ mental focus [21, 43], which in turn reflects the success of the
UI navigation design. Consequently, eye-tracking devices are com-
monly used in usability testing. Moreover, to speed up the design
iteration process and reduce costs, recent studies have employed
artificial intelligence (AI) models to simulate users’ attention distri-
bution [14, 25, 37, 39, 46]. These advancements enable designers to
quickly gain design insights and conserve user study resources.

While previous research focuses on users’ attention distribution
within individual UI screens to evaluate key content saliency, its abil-
ity to address goal-oriented navigation remains limited. However,
user navigation actions are sometimes not driven by the current
UI content but by the objective to utilize specific functions. The
potential of attention distribution analysis to assess whether the UI
design supports such goal-oriented navigation remains unexplored.
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Additionally, the development of predictive models to simulate
users’ attention distribution during goal-oriented navigation is also
a valuable yet unexplored area.

Our research investigates users’ attention distribution within
goal-oriented navigation through two key phases. (1) Formative
Study: We aim to understand how users’ selection of the UI element
(referred to as the link UI ) for navigating between the current and
target screens relates to their attention patterns. We conduct a user
experiment during which participants are presented with novel
app screen pairs and tasked with identifying the link UI between
the screens. We analyze their selections and gaze data to reveal
the relationship between the attention distribution patterns and
the intuitiveness of UI navigation. This phase also allows us to
collect data used to train the model developed during the second
phase of our research. (2) AI Model Development: We introduce
UI Link Transformer (UILT), an AI model trained and evaluated
on the dataset collected from the formative user study to simulate
users’ attention distribution when seeking the correct link UI.

Our findings indicate that intuitive UI navigation directs users’
attention distribution progressively towards the correct link UI,
while unintuitive UI navigation results in a dispersed attention
distribution. To simulate users’ attention distribution when seeking
the link UI in goal-oriented UI navigation, supervising the UILT
with users’ actual attention data, without pre-training the model by
predicting the correct link UI, achieves slightly better performance.

This work makes two key contributions: (1) Formative Study:
Provides insights into user attention patterns and cognitive pro-
cesses when selecting the link UI for navigation. (2)UI Link Trans-
former (UILT): Proposes an AI model to simulate users’ attention
distribution, advancing our understanding of interaction dynamics
in UI navigation design.

2 Related Works
We review prior research from two perspectives: UI navigation
design and its evaluation using eye-tracking and saliency analysis.

2.1 Design of GUI Navigation
Graphical User Interfaces (GUIs) introduced link elements to nav-
igate across disparate interfaces, facilitating transitions between
pages or sections [41]. Research on GUI navigation design can
be categorized into macro and micro levels. Early studies on the
World Wide Web focused on macro-level aspects, such as design
guidelines [13, 22, 32], conceptual models [10, 44], and interactive
techniques [1, 17], aimed at structuring web information hierar-
chically to improve navigation efficiency. In contrast, micro-level
research emphasizes the intuitiveness of navigation relationships
between consecutive UI screens, often leveraging semantic-based
design concepts like interface metaphors [2, 24]. Design guidelines
for crafting intuitive link elements are particularly prevalent in
web [4, 13] and mobile applications [35].

2.2 GUI Navigation Evaluation with Eye
Tracking

Advances in eye-tracking technology [34, 38, 40, 49] have made it
a common tool for usability evaluation across platforms, includ-
ing web-based GUIs [8, 12, 33], computer games [18], smartphone

interfaces [6], and smartwatches [45]. Based on the eye-mind the-
ory [21, 43], visual attention patterns are considered proxies for
mental focus and cognitive strategies. Central to this analytical
framework are two metrics: the number of fixations and scan-
path [8, 45, 50]. The number of fixations indicates the user’s at-
tention distribution, commonly used to assess the visual saliency of
different UI elements on a GUI [3, 6, 19, 26]. The scanpath reveals
how users search for specific information, aiding designers in eval-
uating the layout of a UI [3]. An auxiliary metric, spatial entropy,
derived from the fixation distribution, provides insights into the
convergence of user attention [15]. In this work, we explore how
the user’s performance of identifying the navigation relationship
between two UI screens can relate to their gaze patterns, provid-
ing more details for evaluating the intuitiveness of GUI navigation
semantics.

While eye-tracking experiments provide valuable insights, re-
cruiting participants for these studies is time-consuming. Conse-
quently, there is growing interest in simulating user gaze patterns
to streamline GUI evaluations. Existing research primarily focuses
on developing gaze datasets across diverse UI types and formu-
lating algorithms to predict the saliency maps of individual UI
screens [7, 19, 26]. These predictions aim to replicate users’ percep-
tion patterns when exposed to various visual elements on individual
UI screens, primarily to assess whether the saliency of UI elements
aligns with their importance. Our study differs by simulating user
attention distribution during goal-oriented UI navigation, offering
a novel perspective on evaluating UI navigation intuitiveness.

3 Formative Study: Understanding Users’
Attention Distribution Patterns When
Identifying the Link UI

This study addresses two primary objectives through two sessions.
The first session (user research session) explores the users’ attention
distribution across UI screens pairs when identifying the link UI
between them. The second session (dataset collection) aims to collect
users’ gaze data as the dataset we use in Section 4 to train the AI
model for predicting users’ attention patterns.

3.1 Participants and Apparatus
20 participants (9 females, 11 males; aged from 23 to 31, M = 26.50,
SD = 2.21) were recruited through online social platforms. All par-
ticipants were college students with over five years of smartphone
usage experience. Each participant received an HK$75 bonus for
their participation, and their gaze data was collected with informed
consent.

The study was conducted in a quiet lab room. As shown in
Figure 1a, each participant sat in front of a computer and used
a software tool to label the link UI between two UI screens. The
labeling interface was displayed on a Dell P2314H monitor (23
inches, 1920x1080 resolution). A Gazepoint GP3sd v2 eye tracker
was positioned at the bottom of the monitor to collect the user’s
gaze data.

The labeling tool, shown in Figure 1b, was developedwith Python
Tkinter. This tool offers several functions: a "switch" button allows
users to toggle between viewing the current screen that needs
labeling and the target screen, which provides hints about the goal.
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(a) The environment and apparatus of this user study.

(b) The user interface of labeling tool.

Figure 1: The environment, apparatus, and labeling tool in-
terface of this user study

Participants label the UI component they believe links both screens
on the current screen by left-clicking with the mouse. The software
includes an "uncertain" button for cases where participants cannot
clearly identify a link UI component between the screens. After
labeling a UI component, participants are prompted to enter a
justification for their choice.

The UI screens were sampled from the mobile UI animation sub-
dataset of the Rico dataset [9], which contains 10811 user interaction
traces and 72219 unique UIs from 9772 Android apps. 40 pairs of
screens were used in the user research session and 2000 pairs in the
dataset collection session, covering 5 common types of navigation
patterns (board, tab, list, gallery, and drawer [31]). As our focus
was on how users identify the link UI between two UI screens, we
only sampled single tap gestures. We identified the ground truth of
the link UI according to the coordinates of the tap gestures in the
dataset.

3.2 Procedure
Upon entering the experiment room, participants were first given a
brief overview of the experiment. They then signed a consent form
for the collection of gaze data.

Next, we explained how to use the labeling tool to each partici-
pant. They were allowed to practice several times until they became
proficient in using it. Assistance was provided whenever needed.

The study began with the user research session, where partici-
pants were instructed to label the link UI element across a standard
set of 40 UI pairs, consistent for all participants. After a 5-minute
break, participants commenced the dataset collection session, dur-
ing which they needed to label 100 UI pairs that were unique to
each participant.

3.3 Data Collection and Analysis
3.3.1 Data Collection. We collected each participant’s labeled link
UI, with the Rico dataset serving as the ground truth for these link
UIs (refer to Section 3.1). Additionally, we recorded participants’
gaze data as they viewed the current UI screen to identify the
link UI necessary for navigating to the target screen. From the
user research session, we gathered 800 data points (40 pairs * 20
participants). From the dataset collection session, we collected 2,000
data points (100 pairs * 20 participants). The data points from the
first session were used to identify the relationship between the
UI navigation intuitiveness and the attention distribution patterns.
The data collected from the second session were used to create the
dataset for the AI model (refer to Section 4).

3.3.2 Data Analysis. We introduce the intuitiveness score to
represent the intuitiveness of the navigation relationship between
two consecutive UI screens. This metric corresponds to the ratio of
correct labels (aligned with the ground truth) to the total number
of users. A higher intuitiveness score implies a more discernible
navigation relationship between the two screens, enabling users to
make accurate choices more readily.

We explore the relationship between the intuitiveness score
of different pairs of UI screens and the users’ attention patterns.
Previous research widely adopts two kinds of metric in analyzing
eye-tracking data: fixation and scan path such as viewed sequence
of AOI(s) [29]. Our data displays no significant correlation between
the scan path and the intuitiveness score. Consequently we consider
spatial entropy [28] and the AOI (area of interest) fixation counts
percentage [29], to explore gaze patterns. Spatial entropy measures
the high-level dispersion of the user’s attention across the UI screen,
while AOI fixation count percentage determines the user’s low-level
attention on a specific AOI. Spatial entropy is computed based on
the fixation distribution heatmap, given by

ℎ(𝑥) = 1
𝑇

𝑇∑︁
𝑡=1

𝑁 (𝑥
��𝑔𝑡 , 𝜎2𝐼 ) (1)

where T denotes the total time period we compute the heatmap, x
denotes the indexing image pixels on the GUI screen, 𝑔𝑡 denotes
the fixation point at time t, and 𝜎 = 5 pixels. Then, spatial entropy
is given by

𝐸 (ℎ) = −
∑︁
𝑥∈ℎ

ℎ(𝑥) · log2 (ℎ(𝑥)) (2)

The heatmap describes the distribution of all fixation points on
the UI screen in a certain time period while the spatial entropy
measures the degree of exploration of the UI screen by the partici-
pant [28, 30, 36]. Higher spatial entropy indicates more exploration.
To understand how participants’ visual exploration varied in the
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(a) The P10’s gaze distribution on the current screen in four time
windows of a pair of GUI screen with a high intuitiveness score
(17/20).

(b) The P10’s gaze distribution on the current screen in four time
windows of a pair of GUI screen with a low intuitiveness score (6/20).

Figure 2: P10’s gaze distributions on a high intuitiveness score
screen and a low intuitiveness score screen

process, we divide each participant’s labeling duration into four
time windows and calculate the corresponding four spatial en-
tropies over time. We analyze the correlation between these four
spatial entropies and the intuitiveness score of the UI screen pairs.

Regarding the AOI fixation count percentage, we define the
ground truth link UI as the AOI and calculate the AOI fixation
count percentage as

𝑃𝑜𝐹 =
𝐴𝑂𝐼_𝑓 𝑖𝑥𝑎𝑡𝑖𝑜𝑛
𝑇𝑜𝑡𝑎𝑙_𝑓 𝑖𝑥𝑎𝑡𝑖𝑜𝑛

(3)

where PoF denotes the percentage of fixations in the AOI (ground
truth link UI component), AOI_fixation denotes fixations that fall
into theAOI (the ground truth link UI component), and Total_fixation
denotes the total fixation numbers in the certain time period. The
AOI fixation count percentage measures the weight of the user’s
visual attention on the AOI during the identifying period. We ana-
lyzed the fixation count percentage (PoF) of the whole time duration
including the PoF of each time window e.g., 𝑃𝑜𝐹4𝑡ℎ_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 of
the 4th time window.

3.4 Intuitive Navigation Design and Users’
Attention Distribution Pattern

The gaze heatmaps and their evolution over the four time windows
provide distinct insights on intuitiveness. UI navigation with a
high intuitiveness score (17/20) lead to a gradually convergent
attention distribution towards the correct link UI, while UI with a

Table 1: Correlation between the average spatial entropy of
all subjects in each time window and the intuitiveness scores

Time window Correlation with
intuitiveness score

The 1st time window spatial entropy -0.019
The 2nd time window spatial entropy -0.082
The 3th time window spatial entropy -0.130
The 4th time window spatial entropy -0.367*

Figure 3: The average spatial entropy of four time windows
on two pairs of UI screens, with a 17/20 (see Figure 2a) and
6/20 (see Figure 2b) intuitiveness score, respectively.

low intuitiveness score (6/20) have a spread distribution in all time
windows (see Figure 2).

Spatial Entropy. Figure 3 plots the average spatial entropy for
all participants in each time window for the two screen pairs with
an intuitiveness score (17/20) and (6/20), respectively, presented in
Figure 2. The average spatial entropy gradually decreases from the
first time window to the fourth time window for the GUI with high
intuitiveness score. However, entropy remains constant across all
time windows in the case of the GUI with a low intuitiveness score
(6/20), even displaying a slight increase in the last one.

We also calculate the Pearson’s correlation coefficient between
average spatial entropy in each time window and the intuitiveness
score of the given GUI screen pairs (see Table 1). The negative cor-
relation between the average spatial entropy and the intuitiveness
score strengthens over time, with a significant (p<0.05) negative
correlation observed in the fourth time window. This trend under-
scores the eye movement behavior of participants on GUIs with
high intuitiveness scores, where individuals initially scan the entire
interface before gradually focusing on their target UI component.

AOI Fixation Count Percentage. We do not find a significant
correlation between the 𝑃𝑜𝐹𝑎𝑙𝑙_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 and the intuitiveness
score. Participants’ visual attention distribution is thus not directly
related to their understanding of the GUI screens. Since users’ gaze
tends to converge in the final time window before they label the
link UI component, we also calculate the 𝑃𝑜𝐹4𝑡ℎ_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 of
the 4th time window.

Spearman correlation test reveals that the intuitiveness score of
given UI screen pairs has a positive correlation with a coefficient
of 0.346 (p<0.05) with the 𝑃𝑜𝐹4𝑡ℎ_𝑡𝑖𝑚𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 . The more visual at-
tention the participants pay to the ground truth link UI component,
the more chance they can make the correct selection. However,
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the coefficient does not indicate a very strong correlation for other
reasonable circumstances. For example, some participants may di-
rect their visual attention to multiple UI elements when hesitating
among several candidates. They may then exclude the one that they
viewed the most and label another one or choose "uncertain".

We conclude that well-designed UI navigation can gradually
attract users’ attention to the correct link UI. However, the variation
of their attention distribution over time on other UI elements can
also reveal their mental model. This motivates us to not only predict
the users’ choices but also simulate their attention distribution.

4 UI Link Transformer: Simulating Users’
Attention Distribution When Identifying Link
UI

In this section, we propose an AImodel, named UI Link Transformer
(UILT) to simulate users’ attention distribution when identifying
link UI to navigate to the desired UI screen. We adopt the data
collected during the dataset collection session of the formative
study to develop the UILT.

4.1 Problem Modeling
We state our target problem mathematically as follows. The current
screen𝑋𝑐 can be denoted as a set of features: {𝑥1𝑐 , 𝑥2𝑐 , . . . , 𝑥𝑠𝑐 }, where
𝑠 denotes the number of UI elements of the current screen. The
target screen 𝑋𝑡 can be denoted as a set of features {𝑥1𝑡 , 𝑥2𝑡 , . . . , 𝑥𝑒𝑡 },
where 𝑒 denotes the number of UI elements of the next screen. The
UI element that links these two UI screens can be denoted as𝑋𝑜

𝑐 and
the user’s gaze distribution on the current screen features are repre-
sented as set of probabilities: {𝑔1𝑐 , 𝑔2𝑐 , . . . , 𝑔𝑠𝑐 }. As such, we target to
develop a seq2seq model 𝐹 . The input of our model is two sequences
of screen features from the current screen and the target screen,
and the output of our model is a sequence of probability {𝑃 (𝑥1𝑐 |
𝐹 (𝑋𝑐 , 𝑋𝑡 )), 𝑃 (𝑥2𝑐 | 𝐹 (𝑋𝑐 , 𝑋𝑡 )), . . . , 𝑃 (𝑥𝑠𝑐 | 𝐹 (𝑋𝑐 , 𝑋𝑡 ))}. When sim-
ulating the users’ attention distribution, the model is trained to
learn the parameter 𝜃 which minimizes the Kullback-Leibler Di-
vergence (KL Divergence) between the predicted probability dis-
tribution and users’ gaze distribution: KL({𝑔1𝑐 , 𝑔2𝑐 , . . . , 𝑔𝑠𝑐 }||{𝑃 (𝑥1𝑐 |
𝐹𝜃 (𝑋𝑐 , 𝑋𝑡 )), 𝑃 (𝑥2𝑐 | 𝐹𝜃 (𝑋𝑐 , 𝑋𝑡 )), . . . , 𝑃 (𝑥𝑠𝑐 | 𝐹𝜃 (𝑋𝑐 , 𝑋𝑡 ))}). KL Diver-
gence [20] quantifies the difference between the simulated distri-
butions p and the ground truth distribution q with the formula (4).

𝐾𝐿(𝑞 | |𝑝) = 𝐸𝑞 [log
𝑞(𝑋 )
𝑝 (𝑋 ) ] (4)

4.2 Feature Encoding
We first use UIED [48] to detect the UI elements of a given screen-
shot and reconstruct the bounding box of each UI element. As
for the UI elements which do not have text labels, we use Label-
Droid [5] to add labels. Since the original view hierarchy parsing
from the mobile operating system is not always available, using
computer vision techniques to obtain the metadata of each UI el-
ement makes our methods more generalizable. To vectorize each
UI element on both screens in a pair, we use pre-trained ResNet50
and sentence-BERT to extract the visual features and text features
(see Figure 4). We concatenate the bounding box parameter of each
UI element with the extracted visual and text features, following

Table 2: The KL divergence between the simulated attention
distribution and users’ attention distribution in four time
windows (TW). (The lower the value, the more similar the
two distributions are.)

Model variants KL in TW 1 KL in TW 2 KL in TW 3 KL in TW 4

Random Selector 0.1435 0.1433 0.1431 0.1463
UILT without pre-training 0.0449 0.0473 0.0593 0.0577
UILT with pre-training 0.0497 0.0552 0.0587 0.0702

the embedding method used in ActionBert [16]. Finally, each UI
element is embedded into a 2820-dimensional vector, consisting
of 2048-dimensional visual features, 768-dimensional text features,
and 4-dimensional bounding box parameters.

4.3 Model Structure
Figure 5 provides an overview of the UILT model, which processes
the UI features from the current and target screens as separate
inputs. The backbone structure of this model follows the Trans-
former architecture [42], which forwards the input words into a
Transformer encoder and the target words into a Transformer de-
coder. We use the target screen as the input of the Transformer
encoder and the current screen as the input of the Transformer
decoder. During this process, the features on the target screen are
considered together through the self-attention mechanism in the
Transformer Encoder, and the attention distribution on the current
screen can be decoded through the cross-attention mechanism of
the Transformer Decoder layers. The output of the Transformer
decoder is a sequence of features, where the length of the sequence
is the same as the number of UI elements on the current screen.
With MLP layers and a softmax prediction head, the model can
output possibility distributions for simulating the human attention
distribution which represents the degree of attention given to each
UI element.

4.4 Model Training for Simulating Users’
Attention Distribution

We first pre-train the UILT model on the Rico dataset for predicting
the ground truth of the link UI element between two consecutive
UI screens, as the work ActionBert [16] did. Through this step, our
model learns foundational knowledge for predicting the link UI
element. We then fine-tune the pre-trained model on the human-
labeled dataset to simulate users’ attention distribution.

For the fine-tuning process, we allocate 90% of human-labeled
data samples for training the model and reserve the remaining 10%
for model validation. We also evaluate a model trained directly on
the human-labeled dataset for simulating users’ attention distri-
bution on the current screen in the four time windows, without
model pre-training. The dataset splitting strategy adhered to a 90%
portion for model training and a 10% portion for model validation.

These models are implemented with Pytorch, and trained with a
Nvidia A100 GPU using a batch size of 32 pairs of screens, and the
Adam optimizer [23]
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Figure 4: The pipeline of encoding the UI element features

Figure 5: The model structure of UILT

4.5 Evaluation and Interpretion
Table 2 shows the KL divergence between the simulated attention
distribution and users’ attention distribution in the four time win-
dows. The KL divergence is a common metric for evaluating the
difference between the distributions. The lower the value, the more
similar the two distributions are. The model without pre-training
achieves a KL divergence of 0.0449 in time window 1, 0.0473 in time
window 2, 0.0593 in time window 3, and 0.0577 in time window 4.

The model that is finetuned on the pre-training model achieves the
KL divergence of 0.0497 in time window 1, 0.0552 in time window
2, 0.0587 in time window 3, and 0.0702 in time window 4.

Since no previous work can be used as a baseline, we compare
our model with a random selector, which displays a significantly
higher KL divergence in each time window compared to both UILT
models. UILT can thus simulate users attention better than a random
selector.
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5 Discussion
In this section, we discuss the importance of designing intuitive GUI
navigation, how our method make novel contributions to existing
methods, the limitations of this work, as well as the directions to
move forward.

5.1 Importance of Intuitive GUI Navigation
Design

Users often rely on memory and trial-and-error to navigate mo-
bile apps, which is not ideal. Improving the intuitiveness of UI
navigation significantly enhances user experience. According to
Dorum and Garland, UI design should enable users to leverage
their previous experiences to form accurate mental models [11].
Non-intuitive navigation increases the cognitive load, leading to
frustration and potential abandonment, particularly among specific
demographics such as older adults [27]. While some studies suggest
using interface metaphors to enhance intuitiveness [2, 24], there is
also a need for instant design evaluation methods. Our approach
uses a data-driven AI model to evaluate various design concepts
efficiently, addressing the time constraints associated with user
testing in iterative design processes.

5.2 Novel Contributions to Existing Methods
This study introduces a unique approach by modeling GUI naviga-
tion intuitiveness through user attention distribution. Subjective
experiences like user engagement and brand personality, which are
traditionally challenging to quantify [46, 47] are usually modeled
with scale values. We predict user attention distribution to under-
stand their interaction with the GUI navigational elements, which
provides UI designers with detailed, behavior-based insights rather
than abstract metrics, facilitating more informed design decisions.

Prior research on user attention prediction primarily focuses
on perceptual characteristics of UI elements like visual saliency.
Such a perspective cannot reflect users’ thinking process when
reasoning the relationship between the current screen and the
target screen. Our work differs from previous saliency prediction
works by reflecting users attention distribution in a goal-oriented
UI navigation process.

5.3 Limitations and Future Directions
5.3.1 Study Design Limitations. Our research currently focuses
on single-step navigation tasks, which simplifies data collection
and analysis but does not capture the complexities of multi-step
navigation. This limitation could narrow the applicability of our
findings and the UILT model.

Moreover, the integration of UILT into actual design tools has not
yet been tested in practice, limiting our evaluation to theoretical
scenarios. Future studies should aim to implement UILT within
design workflows to assess its practical effectiveness quantitatively.

5.3.2 Data Collection and Analysis Challenges. The data for train-
ing UILT were labeled by individual participants, which may intro-
duce bias. Additionally, instances where participants opted not to
make a selection were excluded from the analysis but could pro-
vide insights into confusing design elements. Future research will

include these data to enhance our understanding of user navigation
challenges.

5.3.3 Model Performance and Usage Concerns. Due to the absence
of established benchmarks, we compared our model’s performance
against random selectors after training with various methods. This
approach does not fully illustrate UILT’s effectiveness. We aim for
this study to serve as a foundational baseline for future research
in this area. Additionally, this work introduces a novel approach
to predicting user attention distribution, shifting the focus from
merely understanding users’ perceptual characteristics to analyzing
their cognitive processes in goal-oriented tasks. This shift is ex-
pected to guide subsequent research towards more comprehensive
user behavior modeling.

5.3.4 Expanding Research and Application. To enhance UILT’s per-
formance, we aim to collect a broader range of data, including from
specific demographic groups such as older adults. Additionally, we
plan to integrate UILT with large language models (LLMs) to im-
prove its application in design practice. This integration is expected
to not only increase the explainability of UILT’s predictions but also
bolster UI designers’ confidence in the model. This collaborative
approach will help refine UILT’s utility and reliability in real-world
design settings.

6 Conclusion
This paper presents the UI Link Transformer (UILT), an AI model de-
signed to predict users’ attention distribution on mobile UI screens
during navigation tasks. A formative user study was conducted
to explore the correlation between the intuitiveness of navigation
design and users’ attention patterns. This research lays the ground-
work for developing predictive models that simulate user attention
distribution based on UI screen features when trying to navigate to
a target UI screen. The evaluation of UILT establishes a benchmark
for this innovative computational task, which focuses on predicting
user attention distribution in a goal-oriented context.
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